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Abstract

We introduce Description Logics of Context (DLCs) — an extension
of Description Logics (DLs) for context-based reasoning. Our approach
descends from J. McCarthy’s tradition of treating contexts as formal ob-
jects over which one can quantify and express first-order properties. DLCs
are founded in two-dimensional possible world semantics, where one di-
mension represents a usual object domain and the other a domain of con-
texts, and accommodate two interacting DL languages — the object and
the context language — interpreted over their respective domains. Effec-
tively, DLCs comprise a family of two-sorted, two-dimensional combina-
tions of pairs of DLs. We argue that this setup ensures a well-grounded,
generic framework for capturing and studying mechanisms of contextual-
ization in the DL paradigm. As the main technical contribution, we prove
2ExpTime-completeness of the satisfiability problem in the maximally ex-
pressive DLC, based on the DL SHIO. As an interesting corollary, we
show that under certain conditions this result holds also for a range of
two-dimensional DLs, including the prominent (Kn)ALC .

1 Introduction

Description Logics (DLs) are popular knowledge representation formalisms, ap-
plied successfully in a number of fields as logic tools for designing and operating
ontologies, i.e., formal models of terminologies and instance data, representative
of particular domains of interest [5]. The Semantic Web is one of the outstand-
ing environments where such ontologies, expressed in the DL-based Web Ontol-
ogy Languages (OWL), play a key architectural role: facilitating publication of
knowledge on the Web in a machine-understandable way [6]. Through the close
ties to OWL, DLs effectively provide the Semantic Web with its mathematical
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foundations and determine the methodology of knowledge modeling and the rea-
soning regime observed by the ontology-based Web applications. Alongside the
benefits gained from this relationship, come also significant limitations inherent
to the DL paradigm. One such shortcoming, which we focus on here, is the lack
of a generic mechanism for dealing with contextual aspects of knowledge.

Under the standard Kripkean semantics, a DL ontology imposes a unique,
global and uniform view on the represented domain. Put technically, the ax-
ioms of an ontology are interpreted as unconditionally and universally true in
all models of that ontology, e.g., Heart v HumanOrgan ∈ O enforces all domain
individuals of type Heart to be of type HumanOrgan in all possible models of
O. Such a representation philosophy is well-suited as long as everyone shares
the same conceptual perspective on the domain or if there is no purpose for
considering alternative viewpoints. Although these two conditions have tradi-
tionally warranted the very use of ontologies in AI and many ontology engineers
still chose to abide by them, it is also commonly observed that ever more often
they simply fail to be satisfied in practice. Most of times a domain should be
modeled differently depending on the context in which it is considered, where
the context might depend on a spatio-temporal coordinate, the thematic focus,
a subjective perspective of the modeler, the adopted level of granularity of the
representation, an intended application of the ontology, etc. For instance, the
axiom Heart v HumanOrgan, valid in the domain of human anatomy, should
likely lose its generality once a broader perspective of mammal anatomy is con-
sidered. Moreover, the intrinsic inability of accounting for contexts in DLs
seems to hinder the usability of DLs in two fundamental application scenar-
ios. 1) In principle, it is impossible to create ontologies that would be at the
same time broad enough as to capture all relevant information about the do-
main and yet sufficiently detailed as to cover all context-specific peculiarities
in the formal representation of that knowledge. This challenge is commonly
faced by the creators of huge knowledge bases, aiming at maximum coverage of
the representation, such as SNOMED [40] or Cyc [31], and can easily lead to
the development of application-driven mechanisms of contextualization. 2) The
second problem concerns the reuse of knowledge from multiple existing sources
— such as the numerous DL-based ontologies already published on the Web —
in new applications. Naturally, portions of such knowledge retrieved from dif-
ferent ontologies are likely to pertain to different, heterogenous contexts, which
are implicitly assumed during the creation of the sources. Consequently, a faith-
ful reuse of such data cannot be achieved without special semantic mechanisms
which acknowledge and respect its local, context-specific character [23, 7].

Interestingly, variants of these two problems are well-recognized in the field
of knowledge representation and serve as a motivation for two popular theories
of context as used in knowledge representation systems. Bouquet et al. denote
these theories or views as divide-and-conquer and compose-and-conquer [10] and
describe them as follows:

“[...] According to the first view, which we call divide-and-conquer,
there is something like a global theory of the world. This global
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theory has an internal structure, and this structure is articulated
into a collection of contexts. According to the second view, which
we call compose-and-conquer, there is not such a thing as a global
theory of the world, but only many local theories. Each local theory
represents a viewpoint on the world. Also, there may exist relations
between local theories that allow a reasoner to (partially) compose
them into a more comprehensive view. [...]”

As argued by the authors of the quoted passage, these two theories of context
are relevant for problems of two different types and hence they naturally give
rise to two diverse sorts of formal solutions. The ongoing research efforts on
incorporating contexts into the DL framework clearly exhibit this dichotomy.
On the one side, we witness attempts of extending the DL languages with means
of modeling the contextual dependence of knowledge on certain implicit states
inherent to the semantics, such as levels of abstraction over an ontology [20,
21] or states of some fixed modal dimension — most typically a temporal one
[33, 3, 4]. On the other side, there have been several formalisms proposed for
supporting the task of context-sensitive integration of classical DL ontologies,
including Distributed DLs [9], Package-based DLs [8] or E-connections [30], with
no real consensus on the most natural or generic approach.

As both types of solutions are notoriously specialized in their scope, the
problem of formulating a broad and well-grounded theory of contexts within
the DL paradigm remains open. In this paper, we systematically develop a
framework of two-dimensional Description Logics of Context (DLCs), which
aims at filling this gap, and arguably, bridges the two theories of context under
one unifying formal approach. Our proposal is inspired by J. McCarthy’s theory
of formalizing contexts [34], whose gist is to replace logical formulas ϕ, as the
basic knowledge carriers, with assertions of the form ist(c, ϕ). Such assertions
state that ϕ is true in c, where c denotes an abstract first-order entity called
a context. Further, contexts can be on their own described in a first-order
language. For instance, the formula:

ist(c,Heart(a)) ∧HumanAnatomy(c)

states that the object a is a heart in a certain context c of type human anatomy.
Formally, we interpret McCarthy’s theory in terms of two-dimensional possible
world semantics, characteristic of two-dimensional DLs. In DLCs, one semantic
dimension represents a usual object domain, while the other a (possibly infinite)
domain of contexts. Thus, the notion of context is identified with that of Krip-
kean possible world, which provides the former with a philosophically neutral,
yet technically substantial reading, presupposed at the core of McCarthy’s the-
ory. Unlike conventional two-dimensional DLs, the DLCs are equipped with two
interacting DL languages — the object and the context language — interpreted
over their respective domains. These languages allow for explicit modeling of
both: the (contextualized) object-level knowledge and the meta-level knowledge,
i.e. descriptions of contexts as first-class citizens. Consequently, we define a
whole family of two-sorted, two-dimensional combinations of pairs of DLs, com-
prising the DLC framework.
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Contributions. We propose a novel, generic framework of DLCs for model-
ing and studying mechanisms of contextualization in the DL paradigm. The
framework is derived from two roots: conceptually — from McCarthy’s the-
ory of formalizing contexts, grounding our approach in a longstanding research
tradition in AI; formally — from two-dimensional DLs, ensuring strong and
well-understood mathematical foundations. We demonstrate the applicability
of DLCs to a range of representation problems dealing with contexts. We prove
2ExpTime-completeness of the satisfiability problem in the maximally expres-
sive fragment of the framework studied here, with the object and the context
language based on the DL SHIO [24]. As a corollary, we show that the same
result holds also for several underlying two-dimensional DLs with global TBoxes
and local interpretation of roles, including the prominent (Kn)ALC .

Research questions. This paper addresses and provides new answers to the
following research questions:

1. How to extend DLs to support the representation of inherently contextu-
alized knowledge?

2. How to use knowledge from coexisting classical DL ontologies while re-
specting its context-specific scope?

3. Is it possible to capture these two perspectives on contextualization within
one unifying formal framework?

Contents. This paper is based on our work reported in the conference pub-
lications [27] and [28]. The material is organized as follows. In Section 2 we
discuss the formal motivation and the design choices for the proposed framework.
In particular, we carefully advocate our interpretation of McCarthy’s theory in
terms of two-dimensional DL semantics. Section 3 contains the preliminaries for
DLs. In Section 4 we present the syntax and semantics for DLCs. Further, in
Section 5, we outline possible application scenarios, emphasizing their relation
to the divide-and-conquer and compose-and-conquer theories of context. In Sec-
tion 6 we address the relationships of DLCs to the well-known two-dimensional
DLs (Kn)L and S5L, and elaborate on the computational properties of our
logics. Our central result of decidability and the implied upper bound on the
satisfiability problem covers the union of all DLCs introduced in the confer-
ence publications, with the context and object language further extended to the
DL SHIO. Finally, in Section 7 we discuss the related work. The paper is
concluded in Section 8. Some technical proofs are included in the appendix.

2 Overview and formal motivation

Over two decades ago John McCarthy introduced the AI community to a new
paradigm of formalizing contexts in logic-based knowledge systems. This idea,
presented in his Turing Award Lecture [34], was quickly picked up by others and
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by now has led to a significant body of work studying different implementations
of the approach in a variety of formal frameworks and applications [15, 14, 13,
35, 22, 36]. The great appeal of McCarthy’s paradigm stems from the simplicity
and intuitiveness of the three major postulates it is based on:

1. Contexts are formal objects. A context is anything that can be denoted
by a first-order term and used meaningfully in a statement of the form ist(c, ϕ),
saying that formula ϕ is true (ist) in context c, e.g., ist(Hamlet , ‘Hamlet is a
prince.’) [34, 35, 22, 15]. By adopting a strictly formal view on contexts, one
can bypass unproductive debates on what they really are and instead take them
as primitives underlying practical models of contextual reasoning.

2. Contexts have properties and can be described. As first-order objects,
contexts can be in a natural way described in a first-order language [13, 22].
This allows for addressing them generically through quantified formulas such as
∀x(C (x)→ ist(x, ϕ)), expressing that ϕ is true in every context of type C , e.g.,
∀x(barbershop(x)→ ist(x, ‘Main service is a haircut.’)).

3. Contexts are organized in relational structures. In the commonsense
reasoning, contextual assumptions are dynamically and directionally altered
[36, 15]. Contexts are entered and then exited, accessed from other contexts
or transcended to broader ones. A simple way of handling their complex orga-
nization in formal systems is therefore by means of relational structures, which
naturally support representation of diverse relationships and dynamic aspects
in first-order domains. On the syntactic level, the use of such structures can
be further reflected by permitting nested formulas of type ist(c, ist(d , ϕ)). For
instance, ist(France, ist(capital , ‘The city river is Seine.’)) implies that there
exists certain relationship between France and capital such that ‘The city river
is Seine’ is true in the latter context if accessed from (or seen from) the former,
but not necessarily when accessed from any other arbitrary context.

The logics proposed in this paper originate as an approach to implementing
these postulates within the framework of DLs. As is usually the case, the
extent of such implementation can be purposely limited in its scope in order
to obtain formalisms of different expressiveness and, consequently, of different
computational properties. Thus, instead of a single logic, we derive a family
of formalisms generically referred to as Description Logics of Context (DLCs).
In the following paragraphs we motivate the central design choices we made,
starting from basic considerations on the semantics of contextualized knowledge
and further tracing their impact on the selection of specific logical languages.

The first, key step to importing McCarthy’s theory into the DL framework
is to faithfully reinterpret his three postulates on the model-theoretic grounds
of DLs. Effectively, such interpretation must lead to a commitment to a specific
sort of semantic structures, which need to be taken into account in order to
express and interpret contextualized knowledge adequately. Figure 1 illustrates
one such structure, based on our intuitive reading of the postulates. It is a formal
model of an application domain supporting multiple contexts of representation.
As a sample instantiation of this structure, one might consider here a formal
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Figure 1: A formal domain model complying to McCarthy’s postulates.

description of a society of interconnected agents, each one sustaining its own
viewpoint and focus on the represented world.

The model has two apparent levels. The context-level consists of context
entities (postulate 1), which are possibly interlinked with certain relations (pos-
tulate 3) and described in a language containing individual names, concepts and
relation names (postulate 2). For instance, context c is of type D and is related
to d through a relation of type t . Intuitively, each context in the model can
be seen as a box carrying a piece of the object-level representation. Instead of
a unique, global model of the object domain, we associate then a single local
model with every context. These models might obviously differ from each other
as each of them reflects a specific viewpoint on the object domain. Moreover,
they might not necessarily cover the same fragment or aspect of the application
domain and not necessarily use the same fragment of the object language for
describing it. For instance, objects a and b occur at the same time in contexts
c,d , e , but in each of them they are described differently and remain in different
relations to other objects.

The central insight emerging under such a perspective is that the semantic
structures comprising the model theory of a reasonably expressive DL of context
are inherently two-dimensional, with one dimension consisting of domain objects
and the second one of contexts.

Once the main characteristics of the intended semantic structures are identi-
fied, the next step is to find convenient languages for speaking about them and
constraining their possible properties. By the assumption taken in this work,
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Figure 2: A Kripke model of a two-dimensional DL.

DLs are suitable formalisms for representing the object-level knowledge. The
key challenge is then to extend them with additional syntactic means that would
facilitate accommodating the context-level information. A first crucial observa-
tion in this direction is that the context-level structures, as pictured above, can
be seen as Kripke frames, with possible worlds representing context entities and
accessibility relations capturing relations between contexts. It is known that
such frames can be combined in a product-like fashion with the standard DL
interpretations, giving rise to a two-dimensional semantics for DLs with extra
modal operators [43, 29] (see Figure 2), which can be used for modeling the
dynamics of the object knowledge across the states of the second dimension, for
instance time points, as in temporal DLs [33, 4]. As context-dependency bares
many apparent similarities to other dynamic aspects of knowledge, building
DLCs on top of the standard architecture of two-dimensional DLs seems indeed
very natural. Besides the potential benefits of easing the transfer of known re-
sults and proof techniques, such setup offers most of all a very clear-cut formal
reading of the notoriously elusive notion of context. Namely:

CONTEXT = POSSIBLE WORLD

This interpretation of contexts resonates very well with the philosophically neu-
tral and application-agnostic notion of context-as-formal-object lying at the
heart of McCarthy’s theory. At the same time it is technically non-trivial,
as it immediately encourages the use of the rich machinery of modal logics for
capturing and studying different aspects of contextualization. In particular, var-
ious contextualization and lifting operations, i.e. context-sensitive transfers of
knowledge between different contexts [34], can be naturally modeled by means
of modal operators 3,2.

Although this approach, based on two-dimensional DLs, is in general very
attractive, the serious caveat is that it does not offer a direct methodology for de-
scribing contexts per se. More precisely, one can easily augment a DL language
with modal ‘contextualization’ operators for traversing the context dimension of
the models and quantifying over the context entities, but it is not possible to ex-
plicitly assert properties of the accessed contexts, for instance to express global
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Figure 3: Combining models of two DLs.

contextual dependencies, such as ‘In every context of type human anatomy, it
holds that: Heart v HumanOrgan’. Intuitively, such functionality seems essen-
tial for obtaining a fine-grained contextualization machinery. The solution which
we propose here is to employ a second DL language for describing the context
dimension. As a consequence, we obtain a two-sorted, two-dimensional logic,
where each sort of the language is interpreted over the respective dimension in
the semantics. The two languages are suitably integrated on the syntactic and
semantic level, so that their models can be eventually combined as presented in
Figure 3. The style of combination is fully compatible with the underlying two-
dimensional DLs described above. In principle, the two-dimensional models of
the object language are embedded in the models of the context language, where
possible worlds are mapped on (context) individuals and accessibility relations
are mapped on (context) roles. Thus, we are able to show that, depending
on the choice of the context operators, our logics are proper extensions of the
well-known two-dimensional logics (Kn)L or S5L [43].

3 Preliminaries

A DL language L is given by a vocabulary and a set of constructors for compos-
ing complex expressions in the language [5]. A vocabulary Σ = (NC , NR, NI)
consists of a set of concept names NC , a set of role names NR, and a set of
individual names NI . The semantics of L is given through interpretations of
the form I = (∆, ·I), where ∆ is a non-empty domain of individuals and ·I
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Syntax Semantics

Concept and role constructors:

(1) > ∆
(2) C uD {x ∈ ∆ | x ∈ CI ∩DI}
(3) ∃r.C {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
(4) ¬C {x ∈ ∆ | x 6∈ CI}
(5) {a} {aI}
(6) r− {(x, y) ∈ ∆×∆ | (y, x) ∈ rI}

Axioms:

(7) C(a) aI ∈ CI
(8) r(a, b) (aI , bI) ∈ rI
(9) C v D CI ⊆ DI
(10) r v s rI ⊆ sI

Table 1: DL constructors and axioms and their semantics.

is an interpretation function mapping each a ∈ NI to an element aI ∈ ∆,
each A ∈ NC to a subset AI ⊆ ∆ and each r ∈ NR to a binary relation
rI ⊆ ∆ × ∆. The interpretation function is then inductively extended over
complex expressions according to the fixed semantics of the constructors, as
presented in Table 1. Different sets of constructors constitute DLs of possibly
different expressive power and computational properties. The basic DL ALC
comprises constructors (1)-(4), where one writes ⊥ as an abbreviation for ¬>,
C tD for ¬(¬C u ¬D), and ∀r.C for ¬∃r.¬C [38]. The DL SHIO, which is a
significant subset of the OWL 2 DL [25], extends ALC with nominals (5) and
role inverses (6). Moreover, it permits the use of a set of transitive role names
NR+ ⊆ NR, such that for every r ∈ NR+, rI is a transitive relation.

A knowledge base (ontology) K is a finite set of DL axioms, as presented in
Table 1. The language ALC supports axioms (7)-(9), where (7)-(8) are tradi-
tionally known as ABox axioms, while (9) as general concept inclusions, which
form a so-called TBox. The DL SHIO enables additionally construction of
simple role hierarchies, based on axioms of type (10). An interpretation I is
a model of K whenever it satisfies all its axioms, according to the satisfaction
conditions in Table 1. The computational complexity of the central problem of
knowledge base satisfiability, i.e., deciding whether a given knowledge base has
a model, is ExpTime-complete for both ALC [5] and SHIO [24].

Two-dimensional DLs are close relatives of product-like combinations of
modal logics [29]. They arise from extending the standard DL languages with
modal operators applicable to different types of DL expressions, enabling ex-
plicit modeling of a variety of intensional aspects of knowledge, e.g., temporal
[33], dynamic [44], evolutionary [4], probabilistic [32] and others. Here we are
interested in languages with modal operators applied only to concepts.
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Definition 1 (Two-dimensional DL) Let L be a DL language and 3i, 2i,
for i ∈ (1, n), be a set of n pairs of modalities of a modal logic L. Then a
two-dimensional DL concept language LL is the smallest set of concepts closed
under constructors of L and two concept constructors:

3iC | 2iC

for any concept C ∈ LL.
An interpretation of LL is a tuple (W, {Ri}i∈(1,n),∆, {I(w)}w∈W), for some

n ∈ N, where:

• W is a non-empty set of possible worlds,

• Ri is an accessibility relation over W associated with the operators 3i,2i,

• ∆ is a non-empty domain of individuals,

• for every w ∈ W, I(w) = (∆I(w), ·I(w)) is a DL interpretation in the
world w, such that:

– ∆I(w) ⊆ ∆,

– (3iC)I(w) = {x ∈ ∆ | ∃v : wRiv ∧ x ∈ CI(v)},
– (2iC)I(w) = {x ∈ ∆ | ∀v : wRiv → x ∈ CI(v)}.

A two-dimensional DL LL is interpreted under the constant domain assump-
tion iff the class of interpretations is restricted exactly to those satisfying the
condition ∆I(w) = ∆, for every w ∈ W. Otherwise it is interpreted under the
varying domain assumption. A DL atom α ∈ Σ is interpreted rigidly iff the
class of interpretations is restricted exactly to those in which αI(w) = αI(v), for
every w, v ∈W. Otherwise α is interpreted locally.

The logic (Kn)L is defined as an extension of a DL language L with n pairs
of K-modalities, i.e., operators associated with arbitrary relations Ri ⊆W×W.
Analogically, the logic S5L augments L with a single pair of S5-modalities asso-
ciated with the equivalence relation over W. In the case of all two-dimensional
DLs, the definition of the semantics permits certain degrees of freedom regard-
ing domain assumptions (constant vs. varying) and the style of interpretation of
atoms across the possible worlds (rigid vs. local). The choice of domain assump-
tions and the interpretation of individual names are usually only of practical
importance and in most cases do not affect the computational properties of the
logics [29, 42]. The interpretation of roles, on the other hand, has typically more
significant consequences. Rigid roles, turning the formalisms into proper modal
products, very often render them also undecidable, and therefore are usually
avoided [29]. The basic decision problem for two-dimensional DLs is concept
satisfiability w.r.t. global TBoxes, i.e., the problem of deciding whether given
a concept C and a TBox T in LL there exists an interpretation of LL such
that every axiom in T is satisfied in every possible world in the interpretation
and there exists at least one world w ∈ W and an individual x ∈ ∆ such that
x ∈ CI(w).
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4 Syntax and semantics

A Description Logic of Context CLC

LO
consists of the DL context language LC ,

supporting context descriptions, and of the object language LO equipped with
context operators for representing object knowledge relative to contexts.

Definition 2 (CLC

LO
-context language) The context language of CLC

LO
is a DL

language LC over the vocabulary Γ = (MC ,MR,MI), where MC is a set of
context concepts, MR a set of context roles and MI a set of context names.

The object language extends standard DLs with special contextualization
operators applicable to concepts.

Definition 3 (CLC

LO
-object language) Let LO be a DL language over the vo-

cabulary Σ = (NC , NR, NI). The object language of CLC

LO
is the smallest lan-

guage containing LO and closed under the constructors of LO and at least one
of the two types — F1 resp. F2 — of concept-forming operators:

〈r.C〉D | [r.C]D (F1)

〈C〉D | [C]D (F2)

where C and r are a concept and a role of the context language and D is a
concept of the object language.

Intuitively, the concept 〈r .C 〉D denotes all objects which are D in some
context of type C accessible from the current one through r . Analogically,
[r .C ]D denotes all objects which are D in every such context. In the case of F2

operators, the concept 〈C 〉D denotes all objects which are D in some context
of type C , whereas [C ]D all objects which are D in every such context. For
example, 〈neighbor .Country〉Citizen, refers to the concept Citizen in some
context of type Country accessible through the neighbor relation from the
current context. Analogically, 〈HumanAnatomy〉Heart refers to the concept
Heart in some context of HumanAnatomy .

The operators F1 and F2 behave similar to the usual modalities of Kn and
S5, respectively. In particular, for any r and C the expected dualities hold:
〈r .C 〉 = ¬[r .C ]¬ and 〈C 〉 = ¬[C ]¬. The only difference is that the contexts
(possible worlds) accessed by means of F1 or F2 are further qualified with con-
cepts of the context language. We formally clarify this relationship in Section 6.

Definition 4 (CLC

LO
-knowledge base) A CLC

LO
-knowledge base (CKB) is a pair

K = (C,O), where C is a set of axioms over the context language (in the syntax
allowed by LC), and O is a set of formulas of the form:

c : ϕ | C : ϕ

where ϕ is an axiom over the object language (in the syntax allowed by LO),
c ∈MI and C is a concept of the context language.
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A formula c : ϕ states that axiom ϕ holds in the context denoted by name
c. Note, that this corresponds directly to McCarthy’s ist(c, ϕ). Axioms of the
form C : ϕ assert the truth of ϕ in all contexts of type C . For example, the
formula Country : 〈neighbor .Country〉Citizen v NoVisaRequirement states
that in every country, the citizens of its neighbor countries do not require visas.

The semantics is given through CLC

LO
-interpretations and CLC

LO
-models, which

combine the interpretations of LC with those of LO.

Definition 5 (CLC

LO
-interpretations) A CLC

LO
-interpretation is a tuple M =

(C, ·J ,∆, {·I(i)}i∈C), such that:

1. (C, ·J ) is a DL interpretation of LC , where C is a non-empty domain of
contexts1 and ·J an interpretation function defined as usual,

2. ∆ is a non-empty domain of individuals,

3. (∆, ·I(i)), for every i ∈ C, is an interpretation of LO, where ·I(i) is an
interpretation function, such that:

(F1) for every 〈r.C〉D and [r.C]D:

– (〈r.C 〉D)I(i) = {x ∈ ∆ | ∃j ∈ C : (i, j) ∈ rJ ∧ j ∈ CJ ∧ x ∈ DI(j)},
– ([r.C ]D)I(i) = {x ∈ ∆ | ∀j ∈ C : (i, j) ∈ rJ ∧ j ∈ CJ → x ∈ DI(j)}.

(F2) for every 〈C〉D and [C]D:

– (〈C 〉D)I(i) = {x ∈ ∆ | ∃j ∈ C : j ∈ CJ ∧ x ∈ DI(j)},
– ([C ]D)I(i) = {x ∈ ∆ | ∀j ∈ C : j ∈ CJ → x ∈ DI(j)}.

An atom α ∈ Σ of LO is interpreted rigidly iff the class of CLC

LO
-interpretations is

restricted exactly to those in which αI(i) = αI(j), for every i, j ∈ C. Otherwise
α is interpreted locally.

CLC

LO
-interpretations can be seen naturally as extensions of two-dimensional

DL interpretations, introduced in Definition 1, where the context domain cor-
responds to the set of possible worlds. As a consequence, the choice of suitable
domain assumptions and the style of interpretation of atoms applies in the same
sense also here. The constant domain assumption, adopted by default in the
definition above, serves purely technical purposes. Though often unnatural in
practical scenarios, it grants greater generality to the complexity results and
can be easily relaxed to the varying domain case [29].

The difference between the context operators of type F1 and F2 lies in the
choice of the relational structures observed when quantifying over the context
domain. F1-operators bind contexts only along the roles of the context language

1In some cases it might be useful to distinguish between proper contexts in C and other
context-level individuals serving merely for context descriptions. For instance, in provenance
applications, a context c associated with a knowledge source might be described with axiom
hasAuthor(c,henry), where henry is an individual related to c, but not a context itself [7].
See also the context-level individuals described with G,H in Figure 3.
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(as K-modalities), while F2-operators follow the equivalence universal relation
over C (as S5-modalities). This leads to some clear consequences in the scope
and the character of the distribution of the object knowledge over contexts in
CLC

LO
-models. For instance, in Figure 1, the concept 〈t .F 〉B is satisfied by object

a only in context c, while 〈F 〉B is satisfied by a in all contexts in the model.
From the perspective of McCarthy’s theory, employing operators F2, rather
than F1, implies a restriction on postulate (3), permitting only context struc-
tures based on equivalence relations, i.e., structures in which every two contexts
become in principle accessible to each other. The focus on K-like and S5-like
modalities is driven here mostly by the formal simplicity of the two types of
operators and easiness of their integration with the DL semantics. In principle,
however, nothing prevents from constructing logics containing contextualization
operators which mimic other common modalities.

Finally, we define the notion of CLC

LO
-model.

Definition 6 (CLC

LO
-models) A CLC

LO
-interpretation M = (C, ·J ,∆, {·I(i)}i∈C)

is a model of a CKB K = (C,O) iff:

• for every ϕ ∈ C, (C, ·J ) satisfies ϕ,

• for every c : ϕ ∈ O, (∆, ·I(cJ )) satisfies ϕ,

• for every C : ϕ ∈ O and i ∈ C, if i ∈ CJ then (∆, ·I(i)) satisfies ϕ.

Analogically to the standard DLs, we say that a CLC

LO
-knowledge base K is

satisfiable iff K has a CLC

LO
-model. Likewise, the central reasoning problem in

CLC

LO
is deciding knowledge base satisfiability.

5 Application scenarios

The most common uses of contexts in knowledge systems, as argued in [10], can
be classified into two categories, reflecting two prototypical knowledge represen-
tation scenarios: divide-and-conquer and compose-and-conquer (see Section 1).
The first one concerns the problem of representing inherently contextualized
knowledge. The latter, the problem of integrating multiple, non-contextualized
knowledge models in a context-sensitive manner. In what follows, we make these
two scenarios more concrete by grounding them in the practice of knowledge en-
gineering, we explain how they translate into the DL setting, and outline how
they can be supported using DLCs.

5.1 Divide-and-conquer

Picture a complex application domain and a modeler intending to formally rep-
resent knowledge about this domain in a possibly generic, application-agnostic
manner. His task is to construct a representation model that can be reused

13



C : Country(germany) (1)
neighbor(france , germany) (2)

O : germany : ∃hasParent .Citizen(john) (3)
Country : ∃hasParent .Citizen v Citizen (4)
france : 〈neighbor .Country〉Citizen v NoVisaRequirement (5)

neighborj j
NoVisaRequirement

Country

NoVisaRequirement

 Citizen

Citizenfrance germany

   hasParent

(*) j = john

Table 2: A sample CKB in CLC

LO
with F1-operators and its possible model.

for different purposes and in different situations, always providing adequate in-
formation under the specified conditions. The divide-and-conquer philosophy
builds on the observation that in most such cases knowledge is likely to be
inherently contextualized, i.e., implicitly partitioned over a collection of interre-
lated contextual states, which must be taken into account when reasoning about
the domain, as they determine which information applies in the given situation.
The challenge for the modeler is then to elicit this underlying context struc-
ture and explicitly represent it in the model, so that the context-dependency of
knowledge is faithfully reflected and operationalized in the system. From the
perspective of the DL paradigm, such scenarios require expressive extensions of
the standard DL languages, capable of representing contexts. Below we present
two examples of applying DLCs to divide-and-conquer scenarios.

A contextualized knowledge base with F1-operators. Consider a task
of representing knowledge about the visa requirements contextualized with re-
spect to geographic information. This typical instance of the divide-and-conquer
scenario invites construction of a complex knowledge model with an inherent
contextual layer, which allows for a meaningful qualification of the object knowl-
edge. In Table 2, we define such CKB K = (C,O) with F1-operators, consisting
of the context (geographic) ontology C and the object (people) ontology O.
Visibly, france and germany play here the role of contexts, described in the
context language by axioms (1) and (2). In the context of germany , it is known
that john has a parent who is a citizen (3). Since in every Country context
— thus including germany — the concept ∃hasParent .Citizen is subsumed
by Citizen (4), therefore it must be true that john is an instance of Citizen in
germany . Finally, since germany is related to france via the role neighbor ,
it follows that john (assuming rigid interpretation of this name across contexts)
has to be an instance of NoVisaRequirement in the context of france (5). A
sample CLC

LO
-model of K is depicted at the bottom of Table 2.
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C : Geometry vMath (1)
O : disambiguation : Ring v 〈Math〉Ring t 〈Astronomy〉Ring (2)

Math : Ring v AlgebStruct t 〈Geometry〉Annulus (3)
Astronomy : Ring ≡ PlanetRing (4)

Math

Ring

disambiguation

Ring, 
AlgebStruct

1)

Math

Ring

Ring, 
AlgebStruct

Math

Ring

disambiguation

Ring, 
Annulus

Math,
Geometry

Ring

Ring, 

Ring

Astronomy

Ring

disambiguation

Ring,
PlanetRing

2) 3)

Table 3: A sample CKB in CLC

LO
with F2-operators and its possible models.

A contextualized knowledge base with F2-operators. In Table 3, we
model a piece of information presented on the disambiguation website of Wikipe-
dia on querying for the term Ring . In particular, Ring is contextualized accord-
ing to whether it is defined as a mathematical or as an astronomical object.2

Observe, that the named context disambiguation provides basic distinction
on Ring in some Math context and in some Astronomy context (2). This is
further enhanced, by the distinction defined on the level of all Math contexts.
There, Ring denotes either AlgebStruct or Annulus in some further Geometry
context (3), where Geometry contexts are known to be a subset of Math con-
texts. In case of Astronomy context, Ring is actually equivalent to the concept
PlanetRing (4). Three possible CLC

LO
-models of this representation are depicted

at the bottom of Table 3. Similarly to the previous example, the divide-and-
conquer philosophy is manifested here in the way all context-driven anomalies
of the domain knowledge are handled in a monolithic knowledge model.

5.2 Compose-and-conquer

Contrary to what is assumed in the divide-and-conquer scenario, we might ob-
serve that many existing knowledge models actually adopt unique, purpose-
driven viewpoints on the domain, determined by the particular applications at
hand. In certain situations, one might need to reuse a number of such models in
one system. To this end, the models must be composed into a reasonably coordi-
nated, single representation. According to the compose-and-conquer philosophy
this can be achieved by acknowledging the presence of the contexts implicitly as-
sumed during the creation of each individual model and reflecting on how these

2See http://en.wikipedia.org/wiki/Ring.
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Oc : Staff v ∃isEmployed .Company (1)
Staff (J .Smith) (2)

Od : Employee v ∃employedIn.> (3)
Employee(JohnSmith) (4)

Oe : > : 〈{c}〉Staff ≡ 〈{d}〉Employee (5)
> : 〈{c}〉{J .Smith} ≡ 〈{d}〉{JohnSmith} (6)

Table 4: Integration of ontologies Oc , Od via DLC formulas in Oe .

contexts interrelate. The contextualization process is thus considered here as
an a posteriori effort of integrating context-specific knowledge models. In the
DL paradigm, this problem corresponds to a variety of tasks involving ontology
alignment (coordination). Arguably, DLCs can naturally support such scenar-
ios. Observe, that a collection of DL ontologies O1, . . . ,On in some language LO
can be seen as a set of formulas O = {ci : ϕ | ϕ ∈ Oi, i ∈ (1, n)} in CLC

LO
, where

every ontology is associated with a unique context name. Then using DLC for-
mulas one can impose a number of interesting interoperability constraints over
the contents of these ontologies, as presented in the following examples.

Simple vocabulary mappings. A prototypical case of the compose-and-
conquer scenario is integration of ontologies by means of external vocabulary
mappings. Consider two ontologies Oc and Od describing overlapping domains,
as shown in Table 4. Using context operators 〈{c}〉, 〈{d}〉 we can align the
vocabularies of the two ontologies via simple mappings such as (5)-(6). Given
the semantics of DLCs, it follows that Staff must have the same meaning in the
context c as Employee in d (5). Similarly, the denotation of individual names
J .Smith and JohnSmith is the same across c and d (6). Note, that the context
language is restricted here to context names only. In this form, the DLCs
provide similar functionality to other known logic-based ontology integration
formalisms, which we further discuss in Section 7.

Interoperability constraints for ontology alignment and reuse. The
compose-and-conquer philosophy can be also realized using much richer con-
straints than simple one-to-one mappings used in the previous example. Con-
sider an architecture such as the NCBO BioPortal project3, which gathers di-
verse biohealth ontologies, and categorizes them via thematic tags, e.g.: Cell ,
Health , Anatomy , etc., organized in a meta-ontology. The intention of the
project is to facilitate the reuse of the collected resources in new applications.
Note, that the division between the context and the object language is already
present in the architecture of the BioPortal, this is naturally reflected in the ex-
ample of Table 5 where (2) maps the concept Heart from any HumanAnatomy
ontology to the concept HumanHeart in every Anatomy ontology; (3) imposes
the axiom Heart v Organ of an upper anatomy ontology over all Anatomy

3See http://bioportal.bioontology.org/.
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C : HumanAnatomy v Anatomy (1)
O : > : 〈HumanAnatomy〉Heart v [Anatomy ]HumanHeart (2)

Anatomy : Heart v Organ (3)

Table 5: A set of interoperability constraints expressed as a CKB in CLC

LO
with

F2-operators.

ontologies, which due to axiom (1) carries over to all HumanAnatomy on-
tologies.

In general, CLC

LO
provides logic-based explications of some interesting notions,

relevant to the problem of semantic interoperability of ontologies, such as:

concept alignment: > : 〈A〉C v [B ]D
every instance of C in any ontology of type A is D in every ontology of type B

semantic importing: c : 〈A〉C v D
every instance of C in any ontology of type A is D in ontology c

upper ontology axiom: A : C v D
axiom C v D holds in every ontology of type A

Interoperability constraints for ontology evolving. The context opera-
tors can be also interpreted as change operators, in the style of DL of change
[4], for instance, for representing and studying dynamic aspects of ontology
versioning — especially, when evolutionary constraints apply to a whole col-
lection of semantically interoperable ontologies. Some central issues arising in
this setup are integrity (constraining the scope of changes allowed due to ver-
sioning), evolvability (ability of coordinating the evolution of ontologies) and
formal analysis of differences between the versions [26]. In the examples below,
we assume that each ontology version is associated with a unique context, each
context concept denotes all versions of a particular ontology and updatedBy
denotes the relation of being an immediate updated version.

version-invariant concepts: > : 〈A〉C ≡ [A]C
C is a version-invariant concept within the scope of versions of type A

dynamic analysis: > : C u 〈updatedBy .>〉¬C v C?
C? retrieves all instances which are C in some version and evolve into ¬C
in some immediate updated version

evolvability constraints: A : C v 〈updatedBy .B〉D
in any version of type A, every instance of C has to evolve into D in some
immediate updated version of type B

Again, this example naturally instantiates the compose-and-conquer scenario.
Interoperability constraints are intended here as an external layer, imposed a
posteriori over standard DL ontologies in order to elicit and properly coordinate
their implicit, context-specific scopes.
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6 Formal properties

In this section we touch upon two basic formal properties of DLCs: expressive-
ness and complexity of reasoning. In addressing these issues, we rely heavily on
the fact that the DLC framework is grounded in the well-known two-dimensional
DLs [43]. Having such properly established mathematical foundations provides
us with two kinds of benefits. Firstly, it allows for a rough demarcation of ex-
pressive limits of the DLCs, by direct comparisons to related formalisms that
have already been investigated in the literature. Secondly, it enables the adop-
tion of some known proof techniques for studying computational properties of
the framework. The results which we deliver here are not exhaustive, but nev-
ertheless, they offer a good limiting characterization of the proposed logics. We
show that the expressive power of the full DLC framework properly subsumes
the expressiveness of the two-dimensional DLs (Kn)L and S5L, and that the
problem of satisfiability of CLC

LO
-knowledge bases, for LC and LO up to the DL

SHIO, is decidable — in fact, 2ExpTime-complete.
In the following theorem, we show that concept satisfiability w.r.t. global

TBoxes in (Kn)L can be immediately restated as the problem of knowledge
base satisfiability in CLC

LO
with F1-operators.

Theorem 1 ((Kn)L vs. CLC

LO
) Deciding concept satisfiability w.r.t. a global

TBox in (Kn)L is linearly reducible to knowledge base satisfiability in CLC

LO
,

for LO = L, with the context operators of type F1 only.

Proof. Let (C, T ) be a problem instance in (Kn)L. Define the corresponding
knowledge base K = (C,O) in CLC

LO
as follows. First, set C = ∅ and O =

{> : B v D | B v D ∈ T } ∪ {> : (〈s.>〉C)(a)}, for a fresh context role s
and a fresh individual object name a. Then, with every pair of K-modalities
3i,2i in (Kn)L associate a distinct context role name r i and replace every
occurrence of 3i in O with 〈r i.>〉 and every occurrence of 2i with [r i.>]. We
want to show that C is satisfiable w.r.t. T in (Kn)L iff the resulting knowledge
base K is satisfiable in CLC

LO
. But this follows immediately by observing the

direct correspondence between the semantics of both languages, in particular
the semantics of the K-modalities and global TBox axioms in (Kn)L, and of
the corresponding F1-operators and formulas > : ϕ in CLC

LO
. In particular, (⇒)

if (W, {Ri}i∈(1,n),∆, {·I(w)}w∈W) is a model of T with x ∈ CI(w), for some

x ∈ ∆ and w ∈W then (W, ·J ,∆, {·I(w)}w∈W) is a model of K, provided that
Ri = (r i)

J , for every i ∈ (1, n), x = aI(w), and (y, x) ∈ sI(w) for an arbitrary
y ∈ ∆. The (⇐) direction of the claim follows by reversing this argument. q

An analogical reduction follows from S5L to CLC

LO
with F2-operators.

Theorem 2 (S5L vs. CLC

LO
) Deciding concept satisfiability w.r.t. a global TBox

in S5L is linearly reducible to knowledge base satisfiability in CLC

LO
, for LO = L,

with the context operators of type F2 only.
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Proof. Let (C, T ) be a problem instance in S5L. Define the knowledge base
K = (C,O) in CLC

LO
by setting C = ∅ and O = {> : B v D | B v D ∈ T }

∪ {> : (〈>〉C)(a)}, for a fresh individual name a. Then, replace every occur-
rence of 3 in O with 〈>〉 and every occurrence of 2 with [>]. We want to
show that C is satisfiable w.r.t. T in S5L iff the resulting knowledge base K
is satisfiable in CLC

LO
. As in the previous case, we simply observe that the se-

mantics of S5-modalities coincides with that of F2-operators. Hence, (⇒) if
(W, R,∆, {·I(w)}w∈W) is a model of T with x ∈ CI(w), for some x ∈ ∆ and
w ∈W, then (W, ·J ,∆, {·I(w)}w∈W) with an arbitrary J is a model of K, pro-
vided that x = aI(w). For the (⇐) direction we use the equivalence relation R
over W to obtain a corresponding S5L-model from a given CLC

LO
-model of K. q

Notably, these correspondences hold regardless of whether object roles are
interpreted rigidly in both types of logics or only locally, as stated by default in
Definitions 1 and 5.

Observe that for the reductions we use only a residual context language. In
the former case we merely require the top concept and a set of context role
names, while in the latter only the top concept. Clearly, there is also no need
for employing axioms of the context language. This suggests that the expressive
power of DLCs might be in general even greater and strictly subsume that of the
union of (Kn)L and S5L. Indeed, it is not difficult to instantiate this intuition
with concrete examples of properties which are expressible in CLC

LO
, but cannot

be captured by any of the underlying two-dimensional languages. For instance,
context names enable certain forms of functional modalities, which point at
uniquely identifiable possible worlds, as in axioms of type c : ϕ, where the
constraint ϕ is placed exactly over the world named c. By allowing nominals
in the context language one can further exploit this expressive capability, for
instance, to impose cardinality constraints over the possible worlds domain:4

> v {c} t {d}, {c} u {d} v ⊥,

The context language supports also construction of other complex modalities,
as e.g., in the concept:

〈A〉C t [A u ¬B ]C,

which describes the set of objects which are C in any context of type A or
in all contexts of type A and ¬B . Obviously neither (Kn)L or S5L, nor any
of the standard two-dimensional DLs, allows for expressing such properties, as
they require a more fine-grained mechanism of quantifying over possible worlds,
offered by the context language in CLC

LO
. Although currently we do not have

a precise characterization result for the expressiveness of CLC

LO
, it seems that

at least to some extent its behavior can be simulated in two-dimensional DLs
extended with global concepts, i.e., concepts C such that for every w ∈ W it

4It could therefore be argued that context names introduce certain characteristic features
of hybrid logic into the context language, in a similar way as individual object names introduce
them into the object language [2].
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either holds that CI(w) = ∆ or CI(w) = ∅. Technically, such concepts could be
used to simulate the context language by associating with every context concept
C its global counterpart CC , and requiring for every w ∈W the correspondence:

w ∈ CJ iff C
I(w)
C = ∆. Given this restriction, concepts 〈r .C 〉D and 〈C 〉D

of DLCs, could be then roughly translated into 3r(CC u D) and 3(CC u D),
of the respective two-dimensional DLs (Kn)L and (S5)L. However, even if a
complete reduction of this kind was technically possible, this approach would
yield a formalism conceptually inadequate to our motivation, as the semantics
of global concepts is defined purely in terms of the object domain and not the
domain of contexts as we specifically intend here. Moreover, the interaction
between the two levels of representation would be highly obscured, making it
hard to define fragments of CLC

LO
in a modular fashion — simply by selecting

DLs of desired expressiveness for LC and LO.
In order to prove decidability of the knowledge base satisfiability problem

in CLC

LO
, we devise a quasistate elimination algorithm, similar to the one by

Kurucz et al. [29, Theorem 6.61], which extends the standard Pratt-style type
elimination technique, commonly used in demonstrating upper bounds for modal
logics. Essentially, instead of looking directly for a model of a knowledge base,
we abstract from the possibly infinite domains C and ∆, and consider only a
finite number of quasistates which represent possible types of contexts, inhabited
by a finite number of possible types of objects. Further, all object types and all
quasistates which do not satisfy certain criteria are iteratively eliminated. If at
the end of the elimination process there are some non-empty quasistates left, it
is guaranteed that a model exists. In the opposite case, the knowledge base is
unsatisfiable. As the proof is quite involved we only sketch its key steps below,
while full details and missing definitions are presented in the appendix.

Theorem 3 (Upper bound) Satisfiability of a knowledge base in CLC

LO
, for

LO = LC = SHIO, any combination of context operators F1/F2 and for local
interpretation of object roles, is decidable in 2ExpTime.

Proof sketch. Let K = (C,O) be a CLC

LO
-knowledge base whose satisfiability we

want to decide. We assume that several satisfiability preserving transformations
are initially applied to K, helping to reduce the number of syntactic cases to
be addressed in the proof. We use the following notation to mark the sets of
symbols of particular types occurring in K:

• conc(K): all context concepts, closed under negation,

• cono(K): all object concepts, closed under negation,

• subo(K): all axioms in the set {ϕ | C : ϕ ∈ O for any C}.

Next, we introduce three central notions: context types, object types and
quastistates.

A context type for K is a subset c ⊆ conc(K), where:

• C ∈ c iff ¬C 6∈ c, for all C ∈ conc(K),
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• C uD ∈ c iff {C ,D} ⊆ c, for all C uD ∈ conc(K).

An object type for K is a subset t ⊆ cono(K), where:

• C ∈ t iff ¬C 6∈ t, for all C ∈ cono(K),

• C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ cono(K).

A quasistate for K is a tuple q = 〈cq, fq, Oq〉, where cq is a context type for
K, fq ⊆ subo(K) and Oq is a non-empty set of object types for K.

Intuitively, a context type represents a possible element of the context do-
main in a CLC

LO
-model. The precise identity of this element is irrelevant. What

matters is only the set of concepts of the context language which could com-
pletely describe this element in a model of K, where the context language is
restricted only to the concepts (and their negations) occurring in K. Analog-
ically, an object type represents a full description of a possible element of the
object domain. Finally, a quasistate captures a “slice” of a model representing
one possible context inhabited by a set of possible objects.

Eventually we define the notion of quasimodel, which corresponds to a fini-
tized abstraction of a CLC

LO
-model. A quasimodel for K is a set N of quasistates

for K satisfying a number of specific “integrity” conditions. Most importantly,
it has to be guaranteed that all axioms of K are satisfied by the appropriate
types (object and context) in the appropriate quasistates. Also, it has to be en-
sured that for all types containing concepts based on some forms of existential
restrictions (∃r.·, ∃r .·, 〈r .·〉, 〈·〉) there exist suitable types that could possibly
represent their matching successors in a model. Under these constraints we are
then able to prove the key quasimodel lemma.

Lemma 1 There is a quasimodel for K iff there is an CLC

LO
-model of K.

The basic, brute-force algorithm deciding whether a quasimodel for K exists
starts by enumerating the set N of all possible quasistates and then iteratively
eliminates all those which violate any of the constraints mentioned above. If the
elimination terminates returning a non-empty set of quasistates each containing
at least one object type, then this set is guaranteed to be a quasimodel and the
search is finished with the answer “K is satisfiable”. Else, no quasimodel exists
and the algorithm returns “K is unsatisfiable”.

As the maximum size of a quasimodel (total size of all quasistates) is double
exponential in the size of K, and a single run of the elimination procedure
cannot take more than a polynomial number of steps in the total size of the
initially enumerated quasistates, therefore the algorithm must terminate in at
most double exponential time in the size of K. Hence deciding satisfiability of
a CLC

LO
-knowledge base is in 2ExpTime. q

Note that this result holds only for local interpretation of object roles. When
roles are rigid, the satisfiability problem becomes undecidable, which can be
demonstrated by a straightforward reduction of the N×N-tiling problem [29].
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It turns out that in this setting the 2ExpTime upper bound is optimal, at
least whenever context operators F1 are involved and LO subsumes the DL ALC.
The proof relies again on close relationships of CDLs to two-dimensional DLs.
Here, we focus on the logic (DAltn)L [29] and show that it can be reduced
to (Kn)L, which in turn, as shown in Theorem 1, can be embedded in CLC

LO
,

for LO = L. The logic (DAltn)L extends a DL L with a set of functional
modalities©i, i.e. operators associated with accessibility relations Ri satisfying
the properties of seriality (D) and quasi-functionality (Alt):

(seriality) ∀w ∈W ∃v ∈W (wRiv),

(quasi-functionality) ∀w, v, u ∈W (wRiv ∧ wRiu→ v = u).

It is easy to show that there exists a chain of straightforward reductions
relating the logics between (DAltn)L and (Kn)L, including also (Dn)L, based
on serial frames, and (Altn)L, based on quasi-functional frames.

Proposition 1 Concept satisfiability w.r.t. global TBoxes is polynomially re-
ducible between the following logics (where 7→ means reduces to):

(DAltn)L 7→ {(Dn)L, (Altn)L} 7→ (Kn)L.

Proof. To see that the reductions indeed hold, it is sufficient to notice that
the properties of seriality and quasi-functionality can be axiomatized (or at
least emulated) in the languages of the considered logics. Hence, if (C, T ) is
an instance of the concept satisfiability problem w.r.t. a global TBox in some
lefthandside logic, then one can decide it in a righthandside logic by applying
simple transformations of C and T which encode the missing conditions and
thus allow for enforcing only models which are bisimilar to those of the original
logic:

(seriality) Let T ′ = T ∪ {> v 3i> | i ∈ (1, n)}, where n is the number of all
modalities occurring in T and C. Then, (C, T ) is satisfiable on a serial
frame iff (C, T ′) is satisfiable.

(quasi-functionality) W.l.o.g. assume that C = NNF(C), where NNF stands
for Negation Normal Form, and T = {> v CT }, for some CT = NNF(CT ).
Let C ′ and C ′T be the result of replacing every subconcept 3iB occurring
in C and CT , respectively, with (3i>)u (2iB). Then, (C, T ) is satisfiable
on a quasi-functional frame iff (C ′, {> v C ′T }) is satisfiable. q

Next, we reduce the 2ExpTime-hard word problem for exponentially space-
bounded Alternating Turing Machine [16] to the concept satisfiability problem
in (DAltn)ALC . For space limitations the full proof is again presented in the
appendix.

Theorem 4 Deciding concept satisfiability in (DAltn)ALC w.r.t. global TBoxes
and only with local roles is 2ExpTime-hard.
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Proof sketch. Let M = (Q,Σ,Γ, q0, δ) be an Alternating Turing Machine
(ATM), where:

• Q is a set of states containing pairwise disjoint sets of existential states Q∃,
universal states Q∀, and halting states {qa, qr}, where qa is an accepting
and qr a rejecting state;

• Σ is an input alphabet and Γ a working alphabet, containing the blank
symbol ∅, such that Σ ⊆ Γ;

• q0 ∈ Q∃ ∪Q∀ is the initial state;

• δ is a transition relation, which to every pair (q, a) ∈ (Q∃∪Q∀)×Γ assigns
at least one triple (q′, b,m) ∈ Q × Γ × {l, n, r}. The triple describes the
transition to state q′, involving overwriting of symbol a with b and a shift
of the head to the left (m = l), to the right (m = r) or no shift (m = n).
If q is a halting state then the set of possible transitions δ(q, a) for every
a ∈ Γ is empty.

A configuration of an ATM is a sequence ωqω′, where ωω′ is a word based
on Σ, q is a state of the machine and the head of the machine is on the leftmost
symbol of ω′. A succeeding configuration is defined by transitions δ. An ATM
computation tree is a finite tree whose nodes are labeled with configurations,
where:

• the root contains the initial configuration q0ω, where ω is of length n,

• every configuration ωqω′ on the tree, where ωω′ is of length at most 2n,
is succeed by:

– at least one successor configuration, whenever q is an existential state,

– all successor configurations, whenever q is a universal state,

• all leaves are labeled with halting configurations.

A tree is accepting iff all the leaves are labeled with accepting configura-
tions and rejecting otherwise. An ATM accepts an input ω iff there exists an
accepting ATM tree with q0ω as its initial configuration.

To reduce the word problem, for a word ω over Σ, we formulate a global TBox
TM and a concept CM,ω in (DAltn)ALC , such that M accepts ω iff CM,ω is
satisfiable w.r.t. TM. The size of the resulting problem instance (CM,ω, TM) is
at most polynomial in the size of M and ω. The reduction is quite involved
and essentially relies on an extensive use of DAlt-modalities. We define two
separate sets of such operators:

alphabet modalities: ©a, for every a ∈ Γ,

transition modalities: ©q,a,m, for every (q, a,m) ∈ Θ, where Θ = {(q, a,m) |
(q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q},
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Figure 4: Embedding of ATM computation trees (left) and ATM tapes (right)
in (DAltn)ALC-tree-models.

By a suitable use of these operators we are able to encode the complete syntactic
structure of an ATM computation tree in the specific fragments of (DAltn)ALC-
tree-models, as illustrated in Figure 4. In particular, a selected object domain
individual d ∈ ∆ is forced to instantiate the designated concept Tape exactly in
those DAlt-worlds which represent the cells of the ATM tape in the subsequent
configurations. The accessibility relations connecting those worlds encode the
content of the cells and the transitions between the configurations. Further,
specific concepts are used to represent the corresponding positions of the head
and the states of the machine. Finally, using special counting concepts, which
enable traversing the ATM tree structure downwards and upwards, we align the
succeeding configurations semantically, ensuring they satisfy the constraints of
the respective transitions. q

This result grants immediately a lower complexity bound for CLC

LO
.

Theorem 5 (Lower bound) Deciding satisfiability of a knowledge base in CLC

LO
,

for LO = ALC and arbitrary LC , with context operators F1 and for local inter-
pretation of object roles, is 2ExpTime-hard.
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Proof. Immediate by Proposition 1 and Theorems 1 and 4. q

As an interesting corollary, we also obtain a lower bound for the problem
of concept satisfiability w.r.t. global TBoxes in several two-dimensional DLs
considered above, most prominently in (Kn)ALC .

Corollary 1 For any L ∈ {DAltn,Dn,Altn,Kn}, deciding concept satisfia-
bility in LALC w.r.t. global TBoxes and only with local roles is 2ExpTime-hard.

Proof. Immediate by Proposition 1 and Theorem 4. q

This increase in the complexity by one exponential, as compared to ALC
alone (for which the problem is ExpTime-complete [5]), is notable and quite
surprising. It could be expected that without rigid roles the satisfiability prob-
lem in two-dimensional DLs can be reduced to satisfiability in fusion models
of conventional DLs [29]. This in turn should yield ExpTime upper bound by
means of the standard techniques. However, as the following counterexample
for (Kn)ALC shows, this strategy fails.

(†) 3iC u ∃r.2i⊥ (‡) ∃succi.C u ∃r.∀succi.⊥

Although (†) clearly does not have a model, its reduction (‡) to a fusion lan-
guage, where context operators are translated to restrictions on fresh ALC roles,
is satisfiable. The reason is that while in the former case the information about
the structure of the K-frame is global for all individuals, in the latter it be-
comes local. The r-successor in (‡) is simply not ‘aware’ that it should actually
have a succi-successor. This effect, amplified by presence of multiple modalities
and global TBoxes (which can enforce infinite K-trees), makes the reasoning
harder. The result is quite robust under changes of domain assumptions and
holds already in the case of expanding/varying domains in (Altn)ALC . The
only exception applies to (DAltn)ALC and (Dn)ALC with expanding/varying
domains, where reduction to ALC is still possible.

Both complexity bounds established above warrant the following final con-
clusions, where by � we denote the relation of being less or equally expressive.

Theorem 6 Deciding satisfiability of a knowledge base in CLC

LO
, for LC � SHIO,

ALC � LO � SHIO, with at least context operators F1 (and possibly also F2)
and for local interpretation of object roles, is 2ExpTime-complete.

Proof. Immediate by Theorem 3 and Theorem 5. q

Corollary 2 For any L ∈ {DAltn,Dn,Altn,Kn} and ALC � L � SHIO
deciding concept satisfiability in LL w.r.t. global TBoxes and only with local
roles is 2ExpTime-complete.

Proof. Immediate by Proposition 1, Corollary 1 and Theorems 3 and 1. q
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7 Related work

The problem of formalizing contexts in AI has been commonly studied in the
literature (see [1] for an overview). McCarthy’s theory, exploited in this paper,
has been translated into a number of logic systems [15, 13, 36], typically of a
strongly modal flavor. For instance, in the propositional logic of context [15] an
assertion ist(c, ϕ) can be restated as a modal formula 2cϕ, where the behavior
of 2c is suitably axiomatized in order to capture possibly many context-based
operations, e.g., entering and exiting contexts, lifting knowledge from one con-
text to another, etc. As opposed to those traditional approaches, we do not go
deep into axiomatizing specific properties and mechanisms of our context logic,
but rather advocate straightforward use of the standard two-dimensional se-
mantics and two-sorted languages in order to offer a minimal, yet highly flexible
framework for declarative modeling of contextualized knowledge.

Another dominant tradition in the field originates from the paradigm of
multi-context logics (MCLs), introduced by Giunchiglia et al. [18, 19, 17]. While
most formalisms based on McCarthy’s theory support mainly the divide-and-
conquer scenarios, the MCLs are naturally tailored to compose-and-conquer
applications [10], focusing on the mechanisms of bridging multiple local repre-
sentations. Again, we do not enforce any such particular mechanism, compro-
mising application-driven functionalities of DLCs for their generality.

These two perspectives on operationalizing contexts in knowledge systems
can be further linked to two areas of research within the field of DLs: two-
dimensional DLs and logic-based ontology integration. Two-dimensional DLs
[43], addressed at length in this paper, are quintessential for this work as they
constitute a well-grounded paradigm of constructing logics for modeling knowl-
edge relative to implicit semantic states, regardless of the particular philosophi-
cal nature of those states. On the syntactic level, DLCs differ from the standard
two-dimensional DLs in a number of specific aspects, predominantly, in the in-
volvement of a second sort of language for speaking about the second semantic
dimension. To our knowledge such an extension has not yet been studied in the
literature. The area of logic-based ontology integration focuses on the problem
of integrating knowledge contained in multiple, independent sources (DL-based
ontologies). Among many existing solutions there are Package-based DLs [8],
Distributed DLs [9], E-Connections [30], semantic imports [37], and others. Each
offers a formal mechanism of relating the vocabularies belonging to different
sources, while to a large extent preserving the semantic independence of those
sources. To this end the formalisms employ certain semantic relations for link-
ing models of the respective ontologies. As shown in Section 5, DLCs can also
support such scenarios by grounding the integration mechanism in the possible
world semantics. Naturally, all those approaches should likely exhibit different
formal properties and practical behavior, whose precise characterization would
require a separate study.

The need for explicit treatment of context has been also broadly acknowl-
edged by the Semantic Web community and introduced in diverse aspects over
different Semantic Web knowledge representation frameworks [11, 23, 12, 7, 39,
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41, 45]. Particularly interesting here are the efforts on representing and reason-
ing with meta-level descriptions of knowledge, such as involved in our axioms
of type C :ϕ, where C can be seen as a meta-level annotation of the assertion
ϕ. The framework presented in [41] supports simple annotations over OWL
axioms and further allows for selection of those axioms based on annotation
queries. A similar approach, proposed in [45], considers arbitrary Semantic
Web data described with annotations belonging to certain well-behaved anno-
tation languages, e.g., temporal or fuzzy, and supports some basic forms of
annotation-driven inference over the data. The main shortcoming of those and
similar contributions is, in our view, a quite limited treatment of the meta-level
representation, which is often expressed in restricted, non-logical languages, im-
peding the semantic transparency and reasoning capabilities of the systems.

Finally, we acknowledge the substantial work by Serafini and Homola [39],
in which the framework of Contextualized Knowledge Repositories (CKRs) is
defined. Notably, this proposal incorporates the key components integral to
our DLCs: DL-based representation of object knowledge, contexts as formal
objects, a two-dimensional semantics, a mechanism of relating knowledge from
different contexts, meta-level descriptions of contexts. However, apart from the
full use of DL languages over the object dimension, the remaining features of
CKRs are somewhat restricted compared to DLCs. The number of contexts
in CKRs is always finite, the mechanism for relating knowledge from different
contexts operates on one-to-one basis, and finally, the context language does not
embrace the full expressiveness of standard DL languages, but instead supports
descriptions of contexts in terms of property-value pairs. Consequently, DLCs,
although closely aligned with CKRs in terms of the motivation, conceptual
foundations, and basic formal insights, can be seen as a formal generalization
of this framework, characterized by a broader and more liberal view on the
context-level components of the architecture. Notably, this generality of DLCs
is penalized with the high computational complexity of the most expressive
fragment. However, it is a trade-off that can be in principle controlled by
additional syntactic restrictions, suitably taming the interaction between the
two dimensions. On the contrary, CKRs do not tend to increase the complexity
of reasoning compared to that of the underlying DL object language, but in
turn, leave less space for adjusting the contextualization mechanism.

8 Conclusions

Representing inherently contextualized knowledge, as well as reasoning with
multiple, heterogenous, but semantically interoperating knowledge sources, are
both interesting and practically vital problems within the area of the DL-based
knowledge representation. It is our strong belief that these two challenges are
in fact two sides of the same coin and, consequently, they should be approached
within the same, unifying formal framework. In this paper, we have proposed
such a framework, founded on a novel family of two-dimensional, two-sorted
Description Logics of Context, which arguably supports both functionalities,
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seamlessly integrated on the grounds of one formal theory. The pivotal premise
of this theory is that contexts should be interpreted as possible worlds in the
second modal dimension, added to the standard semantics of DLs. In this way
the instrumental, application-agnostic spirit of McCarthy’s theory of contexts
can be successfully combined with the formal machinery of modal logics.

The work presented in this paper establishes the generic foundations for the
DLC framework and opens up a number of theoretical and practical problems
which should be addressed in the future research. One important direction is
to investigate how different notions common to traditional context-based sys-
tems (e.g., managing local inconsistencies, representing the generality hierarchy
of contexts, etc.) can be effectively restated within DLCs. Another course of
research should be dedicated to identification and formal analysis of specific frag-
ments of the framework that could be especially useful in practice, particularly
considering Semantic Web applications. For instance, a scenario of integrating a
finite number of ontologies does not in principle require the full expressiveness of
DLCs. Similarly, an efficient support for reasoning with contextually annotated
Semantic Web data could be likely provided via a more lightweight fragment.
Finally, on a more abstract level, it could be interesting to investigate whether
a similar methodology of constructing two-dimensional, two-sorted formalisms
could be applicable to combinations of DLs with other modal logics, e.g. spatial
or temporal, in order to support fine-grained descriptions of the second semantic
dimension by means of a dedicated vocabulary.
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Appendix

Below we present full proofs of two key results sketched in Section 6.

Upper complexity bound

First we demonstrate decidability and the implied 2ExpTime upper complexity
bound for the knowledge base satisfiability problem in CLC

LO
. For the proof we

devise a quasistate elimination algorithm, similar to the one by Kurucz et al.
[29, Theorem 6.61], which extends the standard Pratt-style type elimination
technique, commonly used in demonstrating upper bounds for modal logics.
Essentially, instead of looking directly for a model of a knowledge base, we
abstract from the possibly infinite domains C and ∆, and consider only a finite
number of quasistates which represent possible types of contexts, inhabited by
a finite number of possible types of objects. Further, all object types and all
quasistates which do not satisfy certain criteria are iteratively eliminated. If at
the end of the elimination process there are some non-empty quasistates left, it is
guaranteed that a model exists. Otherwise, the knowledge base is unsatisfiable.

Theorem 3 (Upper bound) Satisfiability of a knowledge base in CLC

LO
, for

LO = LC = SHIO, any combination of context operators F1/F2 and for local
interpretation of object roles, is decidable in 2ExpTime.

Proof. Let K = (C,O) be a knowledge base in CLC

LO
, for LO = LC = SHIO with

context operators F1 and F2.
By ·− we denote the inverse constructor for roles and assume that (r−)− = r

(resp. (r−)− = r). Let f be a set of SHIO axioms. Then by v∗f we denote the

reflexive-transitive closure of v on {r v s, s− v r− | r v s ∈ f, for r, s ∈ NR}
(resp. {r v s, s− v r− | r v s ∈ f, for r , s ∈ MR}). W.l.o.g. we assume that
none of the constructors [r .·], [·], ∀r.·, ∀r .·, t occur in K. Further, all axioms
a : ϕ ∈ O are restated in the equivalent form {a} : ϕ and all the following types
of (sub)formulas are replaced with their equivalents:

C(a) ⇒ {a} v C,
r(a, b) ⇒ {a} v ∃r.{b},
C (a) ⇒ {a} v C ,
r(a , b) ⇒ {a} v ∃r .{b}.

The following notation is used to mark the sets of symbols of particular type
occurring in K:

conc(K): all context concepts, closed under negation,
cono(K): all object concepts, closed under negation,
rolc(K): all context roles,
rol+c (K) ⊆ rolc(K): all transitive context roles,
rolo(K): all object roles,
rol+o (K) ⊆ rolo(K): all transitive object roles,
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indc(K): all context individual names,
indo(K): all object individual names,
subo(K): all axioms from {ϕ | C : ϕ ∈ O for any C}.

First, we define three types of entities: context types, object types and
quasistates, which are the basic building blocks for the finite representations
of CLC

LO
-models, called quasimodels. Intuitively, a context type represents a

possible element of the context domain in a CLC

LO
-model. The precise identity of

this element is irrelevant. What matters is only the set of concepts of the context
language which could completely describe this element in a model of K, where
the context language is restricted only to the concepts (and their negations)
occurring in K. Analogically, an object type represents a full description of a
possible element of the object domain. Finally, a quasistate captures a “slice” of
a model representing one possible context inhabited by a set of possible objects.

A context type for K is a subset c ⊆ conc(K), where:

• C ∈ c iff ¬C 6∈ c, for all C ∈ conc(K),

• C uD ∈ c iff {C ,D} ⊆ c, for all C uD ∈ conc(K).

An object type for K is a subset t ⊆ cono(K), where:

• C ∈ t iff ¬C 6∈ t, for all C ∈ cono(K),

• C uD ∈ t iff {C,D} ⊆ t, for all C uD ∈ cono(K).

Definition 7 (matching object role-successor) Let t, t′ be two object types
for K and f ⊆ subo(K). For any r ∈ rolo(K), t′ is a matching r-successor for
t under f iff the following conditions are satisfied:

• {¬C | ¬∃r.C ∈ t} ⊆ t′ and {¬C | ¬∃r−.C ∈ t′} ⊆ t,

• if r ∈ rol+
o (K) then {¬∃r.C ∈ t} ⊆ t′ and {¬∃r−.C ∈ t′} ⊆ t,

• t′ is a matching s-successor for t under f , for every s ∈ rolo(K) such that
r v∗f s,

• t is a matching s-successor for t′ under f , for every s ∈ rolo(K) such that
r− v∗f s.

A quasistate for K is a tuple q = 〈cq, fq, Oq〉, where cq is a context type for
K, fq ⊆ subo(K) and Oq is a non-empty set of object types for K. We say that
q is saturated iff for every t ∈ Oq:

(qS) if ∃r.D ∈ t then t has a matching r-successor t′ ∈ Oq under fq.

We call q coherent iff the following conditions hold:

(qC1) for every a ∈ indo(K) there exists a unique t ∈ Oq such that {a} ∈ t,

(qC2) for every C : ϕ ∈ O, if C ∈ cq then ϕ ∈ fq,
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(qC3) for every C v D ∈ fq and t ∈ Oq, if C ∈ t then D ∈ t,

(qC4) for every t ∈ Oq and ¬〈C 〉D ∈ t, if C ∈ cq then ¬D ∈ t.

A linkage between two quasistates q = 〈cq, fq, Oq〉 and q′ = 〈c′q, f ′q, O′q〉 for
K is a mapping λ = g ∪ h, where g : Oq 7→ O′q and h : O′q 7→ Oq, such that for
every a ∈ indo(K) and t ∈ Oq ∪O′q, {a} ∈ t iff {a} ∈ λ(t).

Definition 8 (matching F2-successor) Let q = 〈cq, fq, Oq〉 and q′ =
〈c′q, f ′q, O′q〉 be two quasistates for K. Then q′ is a matching F2-successor for
q via a linkage λ iff for every t ∈ Oq ∪ O′q, {〈C〉D ∈ t} ∪ {¬〈C〉D ∈ t} =
{〈C〉D ∈ λ(t)} ∪ {¬〈C〉D ∈ λ(t)}.

Definition 9 (matching F1-successor) Let q = 〈cq, fq, Oq〉 and q′ =
〈c′q, f ′q, O′q〉 be two quasistates for K. For any r ∈ rolc(K), q′ is a matching
r-successor for q via a linkage λ iff q′ is a matching F2-successor for q via λ
and the following conditions are satisfied:

• {¬C | ¬∃r.C ∈ cq} ⊆ c′q and {¬C | ¬∃r−.C ∈ c′q} ⊆ cq,

• if r ∈ rol+
c (K) then {¬∃r.C ∈ cq} ⊆ c′q and {¬∃r−.C ∈ c′q} ⊆ cq,

• for every t ∈ Oq and t′ ∈ O′q, {¬D | ¬〈r.C〉D ∈ t,C ∈ c′q} ⊆ λ(t), {¬D |
¬〈r.C〉D ∈ λ(t′),C ∈ c′q} ⊆ t′, {¬D | ¬〈r−.C〉D ∈ λ(t),C ∈ cq} ⊆ t and
{¬D | ¬〈r−.C〉D ∈ t′,C ∈ cq} ⊆ λ(t′),

• for every t ∈ Oq and t′ ∈ O′q, if r ∈ rol+
c (K) then {¬〈r.C〉D ∈ t} ⊆ λ(t),

{¬〈r.C〉D ∈ λ(t′)} ⊆ t′, {¬〈r−.C〉D ∈ λ(t)} ⊆ t and {¬〈r−.C〉D ∈ t′} ⊆
λ(t),

• q′ is a matching s-successor for q via λ for every s ∈ rolc(K) such that
r v∗C s,

• q is a matching s-successor for q′ via λ for every s ∈ rolc(K) such that
r− v∗C s.

A set of quasistates Q is saturated iff for every quasistate q ∈ Q, with
q = 〈cq, fq, Oq〉:

(QS1) for every ∃r .C ∈ cq there is a matching r -successor for q in Q via some
linkage λ,

(QS2) for every t ∈ Oq and 〈C 〉D ∈ t there is a matching F1-successor q′ =
〈c′q, f ′q, O′q〉 for q in Q via some linkage λ, such that C ∈ c′q and D ∈ λ(t),

(QS3) for every t ∈ Oq and 〈r .C 〉D ∈ t there is a matching r -successor q′ =
〈c′q, f ′q, O′q〉 for q in Q via some linkage λ, such that C ∈ c′q and D ∈ λ(t).

A quasimodel N for K is a non-empty, saturated set of saturated and coherent
quasistates for K satisfying the following conditions:
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(M1) for every c ∈ indc(K) there is a unique q ∈ N, with q = 〈cq, fq, Oq〉, such
that {c} ∈ cq,

(M2) for every C v D ∈ C and q ∈ N, with q = 〈cq, fq, Oq〉, if C ∈ cq then
D ∈ cq.

We can now prove the quasimodel lemma.

Lemma 1 There is a quasimodel for K iff there is an CLC

LO
-model of K.

Proof. The key observation which we exploit in this proof is that the constraints
(QS1)-(QS3) imposed on quasimodels ensure existence of certain specific qua-
sistates, which represent successors in the context dimension, and existence of
special linkage relations allowing for a proper choice of types for the same ob-
ject in different contexts. To ease reference to these elements we amend the
corresponding conditions with the following naming conventions:

(QS1*) in such case call q′ a witness for (∃r .C , q) and a linkage λ, enforced
by the condition, a witnessing linkage,

(QS2*) in such case call q′ a witness for (〈C 〉D, t, q) and a linkage λ, enforced
by the condition, a witnessing linkage,

(QS3*) in such case call q′ a witness for (〈r .C 〉D, t, q) and a linkage λ, enforced
by the condition, a witnessing linkage.

(⇒) Suppose N is a quasimodel for K = (C,O). We construct an CLC

LO
-model

M = (C, ·J ,∆, {·I(i)}i∈C) of K based on N. We start by defining an interpreta-
tion of the context dimension (C, ·J ). First, for every c ∈ indc(K) and q ∈ N
such that {c} ∈ q, add q to C and set cJ = q. In case indc(K) = ∅ set C = {q}
for any q ∈ N. Then iteratively extend (C, ·J ) as follows. For every q ∈ C, with
q = 〈cq, fq, Oq〉:

• for every ∃r .C ∈ cq pick a witness q′ for (∃r .C , q) from N, add it to C
and set (q, q′) ∈ rJ ,

• for every t ∈ Oq and 〈C 〉D ∈ t pick a witness q′ for (〈C 〉D, t, q) from N
and add it to C,

• for every t ∈ Oq and 〈r .C 〉D ∈ t pick a witness q′ for (〈r .C 〉D, t, q) from
N, add it to C and set (q, q′) ∈ rJ .

Further, we extend the interpretation of roles by iteratively saturating the fol-
lowing steps. For every q, q′, q′′ ∈ C and r , s ∈ rolc(K):

• if (q, q′) ∈ rJ then set (q′, q) ∈ (r−)J ,

• if (q, q′) ∈ rJ and r v∗C s then set (q, q′) ∈ sJ ,

• if r ∈ rol+c (K) and (q, q′), (q′, q′′) ∈ rJ then set (q, q′′) ∈ rJ .
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Finally, for every A ∈ conc(K) set AJ = {q ∈ C | A ∈ cq}.
By structural induction it follows that all complex context concepts are

satisfied by M in the expected contexts. In particular, all role restrictions must
be satisfied due to an adequate interpretation of context roles, ensuring that:

• role names and their inverses are interpreted as relations which are inverses
of each other,

• transitive roles are interpreted as transitive relations,

• the role hierarchies entailed by C are respected.

Above properties are guaranteed by Definition 9 and the construction of the
model. Consequently, since N satisfies conditions (M1), (M2), all axioms from
the context knowledge base C must be satisfied. Next we turn to the object
dimension.

A run ρ through C is a choice function which for every q ∈ C selects an
object type ρ(q) ∈ Oq. Runs are used for representing the behavior of object
individuals across contexts. The easiest way to properly constrain this behavior
is by employing the witnessing linkages introduced in conditions (QS1)-(QS3).
Note that the way the interpretation (C, ·J ) is constructed ensures that for every
two contexts there exists a witnessing linkage we can refer to in order to align
the interpretations of object individuals inhabiting these contexts. A set of runs
R is coherent iff the following conditions are satisfied. For every q, q′ ∈ C, with
q = 〈cq, fq, Oq〉 and q′ = 〈c′q, f ′q, O′q〉 and λ being the witnessing linkage between
q and q′:

• for every a ∈ indo(K), there is exactly one run ρa,q ∈ R such that {a} ∈
ρa,q(q),

• for every ρ ∈ R, λ(ρ(q)) = ρ(q′),

• for every t ∈ Oq and t′ ∈ O′q, if λ(t) = t′ then there exists ρ ∈ R, such
that ρ(q) = t and ρ(q′) = t′.

We let ∆ = R, for a coherent set of runs R through C, and for every q ∈ C,
with q = 〈cq, fq, Oq〉, we fix the corresponding interpretation function ·I(q) as
follows:

• for every individual name a ∈ indo(K) set aI(q) = ρa,q(q),

• for every concept name A ∈ cono(K) set AI(q) = {ρ ∈ R | A ∈ ρ(q)},

• for every role r ∈ rolo(K), ρ ∈ R and ∃r.D ∈ ρ(q) pick ρ′ ∈ R such that
ρ′(q) is a matching r-successor for ρ(q) under fq and set (ρ, ρ′) ∈ rI(q).

Note that by aligning runs with the witnessing linkages we automatically en-
sure that each object obtains compatible interpretations in every two related
contexts. In particular, whenever d ∈ (〈r .C 〉D)I(q) for some d ∈ ∆ and q ∈ C,
there has to exist a context q′ ∈ CJ accessible from q through r in which
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d ∈ DI(q′). By the same token, whenever d ∈ (〈C 〉D)I(q), there must be a
context q′ ∈ CJ such that d ∈ DI(q′).

Further, as before, we extend the interpretation of roles by iteratively sat-
urating the following steps. For every q ∈ C, with q = 〈cq, fq, Oq〉, every
ρ, ρ′, ρ′′ ∈ R and r, s ∈ rolo(K):

• if (ρ, ρ′) ∈ rI(q) then set (ρ′, ρ) ∈ (r−)I(q),

• if (ρ, ρ′) ∈ rI(q) and r v∗fq s then set (ρ, ρ′) ∈ sI(q),

• if r ∈ rol+o (K) and (ρ, ρ′), (ρ, ρ′′) ∈ rI(q) then set (ρ, ρ′′) ∈ rI(q).

Similarly as in the context dimension, Definition 7 along with way the model
is constructed ensure an adequate interpretation of all roles. Consequently, by
structural induction it is not difficult to see that all object concepts are satisfied
by M as expected and thus, since N satisfies conditions (qC1)-(qC4), all axioms
from the object knowledge base O must be also satisfied.

(⇐) This direction is straightforward. Let M = (C, ·J ,∆, {·I(i)}i∈C) be a CLC

LO
-

model of K. We construct a quasimodel N for K as follows. Let t be a function
mapping every context from C to its type determined by the interpretation M,
i.e., for every c ∈ C, set t(c) = 〈tc, fc〉 where tc and fc have to satisfy the
constraints:

• C ∈ tc iff c ∈ CJ , for every C ∈ conc(K),

• ϕ ∈ fc iff I, c |= ϕ, for every ϕ ∈ subo(K).

In the same way we use t to denote object types for objects. For every object-
context pair 〈d, c〉 ∈ ∆× C we define t(d, c) as:

• C ∈ t(d, c) iff d ∈ CI(c), for every C ∈ cono(K),

Further, for every c ∈ C let Oc = {t(d, c) | d ∈ ∆} be the set of object types
represented in the context c. We can then define a quasistate for every c ∈ C
as qc = 〈tc, fc, Oc〉, where t(c) = 〈tc, fc〉. Finally, let N = {qc | c ∈ C}. Clearly
N is a quasimodel for K. In particular, it is guaranteed that for all existential
restrictions and context operators occurring in the context and object types from
the quasistates, there must exist suitable witnesses and witnessing linkages, and
thus that all conditions constituting quasimodels have to be satisfied. q

The basic, brute-force algorithm deciding whether a quasimodel for K ex-
ists enumerates all possible quasistates and then iteratively eliminates all those
which violate any of the constraints defined above. If the elimination termi-
nates returning a non-empty set of quasistates each containing at least one
object type, then this set is guaranteed to be a quasimodel and the search is
finished with the answer “K is satisfiable”. Else, no quasimodel exists and the
algorithm returns “K is unsatisfiable”.

We start by enumerating the set N of all possible quasistates. Further, we
enumerate all possible mappings γ : indc(K) 7→ N. The algorithm proceeds in
two steps:
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1. select a mapping γ, and for every c ∈ indc(K) eliminate all quasistates
q ∈ N such that q 6= γ(c), with q = 〈cq, fq, Oq〉 and {c} ∈ cq,

2. iteratively eliminate all quasistates and object types from the quasistates
which violate any of the conditions (qS), (qC1)-(qC4), (QS1)-(QS3), (M1)-
(M2).

It succeeds iff the following conditions are met:

• no more object types nor quasistates can be eliminated,

• there is at least one quasistate left and every quasistate contains at least
one object type.

In such case the result of elimination is clearly a quasimodel and the search
is finished with the answer “K is satisfiable”. Else, if all quasistates get elim-
inated, the algorithm selects another mapping γ and repeats the elimination
procedure. If none of the mappings allow for a successful termination then
clearly no quasimodel exists and the algorithm returns “K is unsatisfiable”.

The whole algorithm runs in double exponential time in the size of K. To
show this, we observe that the following (very liberally estimated) inequalities
hold. By `(K) we denote the size of K, measured in the number of symbols
used, and by |X| — the number of elements of set X:

|conc(K) ∪ cono(K)| ≤ 2`(K),
|indc(K)| ≤ `(K), |subo(K)| ≤ `(K),

size of a quasistate:
`(q) ≤ `(K) · (|conc(K)|+ |subo(K)|+ 2|cono(K)|) ≤ `(K) · (2`(K) + `(K) + 22`(K)),

number of quasistates in a quasimodel:

|N| = 2|conc(K)| · 2|subo(K)| · 22|cono(K)|
= 22`(K) · 2`(K) · 222`(K)

.

Since deciding whether a quasistate can be eliminated at a given stage,
in particular checking if there exist appropriate witnesses for it (QS1)-(QS3),
cannot take more than `(q)2 · |N| steps, therefore a single run of the elimination
procedure takes no more than (`(q) · |N|)2 steps. Finally, there can be at most
|N||indc(K)| different mappings γ, hence the whole procedure must terminate in

time belonging to O(22`(K)

). q

Lower complexity bound

Next, we derive the lower bound for the concept satisfiability problem in the
logic (DAltn)ALC , which carries over to several other logics discussed in this
paper, including CLC

LO
. We start by making an observation, which is especially

useful in the proof, that (DAltn)ALC is Kripke-complete w.r.t. the class of
infinite intransitive trees with a constant branching factor, determined by the
number of context modalities.
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Proposition 2 A concept C is satisfiable w.r.t. a global TBox T in (DAltn)ALC
iff it is satisfied w.r.t. T in some model M = (W, {<i}1≤i≤n,∆, {·I(w)}w∈W),
such that 〈W,

⋃
{<i}1≤i≤n〉 is a tree, every world in W has exactly one <i-

successor, for each i ∈ (1, n), and for i 6= j, <i- and <j-successors are different.

Models based on such trees can be easily obtained from arbitrary (DAltn)ALC-
models by using the standard unraveling technique. Thus, in what follows, we
focus exclusively on (DAltn)ALC-tree-models.

Theorem 4 Deciding concept satisfiability in (DAltn)ALC w.r.t. global TBoxes
and only with local roles is 2ExpTime-hard.

The proof is based on reduction of the word problem of an exponentially
space-bounded Alternating Turing Machine (ATM), which is known to be 2Ex-
pTime-hard [16].

Alternating Turing Machines

An ATM is a tuple M = (Q,Σ,Γ, q0, δ), where:

• Q is a set of states containing pairwise disjoint sets of existential states Q∃,
universal states Q∀, and halting states {qa, qr}, where qa is an accepting
and qr a rejecting state;

• Σ is an input alphabet and Γ a working alphabet, containing the blank
symbol ∅, such that Σ ⊆ Γ;

• q0 ∈ Q∃ ∪Q∀ is the initial state;

• δ is a transition relation, which to every pair (q, a) ∈ (Q∃∪Q∀)×Γ assigns
at least one triple (q′, b,m) ∈ Q × Γ × {l, n, r}. The triple describes the
transition to state q′, involving overwriting of symbol a with b and a shift
of the head to the left (m = l), to the right (m = r) or no shift (m = n).
If q is a halting state then the set of possible transitions δ(q, a) for every
a ∈ Γ is empty.

A configuration of an ATM is given as a sequence ωqω′, where ω, ω′ ∈
(Γ \ {∅})∗ and q ∈ Q, which says that the tape contains the word ωω′ (possibly
followed by blank symbols), the machine is in state q and the head of the
machine is on the leftmost symbol of ω′. A succeeding configuration is defined by
transitions δ, where the head of the machine reads and writes the symbols on the
tape. A configuration ωqω′ is a halting one if q = qa (accepting configuration)
or if q = qr (rejecting configuration).

Without loss of generality we adopt a somewhat simplified and more con-
venient setup for ATMs presented in [4]. An ATM computation tree of M is
a finite tree whose nodes are labeled with configurations and such that the
following conditions are satisfied:

• the root contains the initial configuration q0ω, where ω is of length n,
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• every configuration ωqω′ on the tree, where ωω′ is of length at most 2n,
is succeeded by:

– at least one successor configuration, whenever q ∈ Q∃,
– all successor configurations, whenever q ∈ Q∀,

• all leaves are labeled with halting configurations.

A tree is accepting iff all the leaves are labeled with accepting configurations
and rejecting otherwise. An ATM accepts an input ω iff there exists an accepting
ATM tree with q0ω as its initial configuration. The set of all words accepted by
an ATMM is denoted as the language L(M). As demonstrated in [16, Theorem
3.4], the problem of deciding whether ω ∈ L(M), for ω and M complying to
the requirements described above, is 2ExpTime-hard.

Reduction

Technically the reduction is quite involved but its conceptual core is straightfor-
ward. We use separate DAlt modalities for representing symbols of the alphabet
and possible transitions. By isolating specific fragments of
(DAltn)ALC-tree-models we can thus embed the syntactic structure of an ATM
computation tree (see Figure 4). At the same time, using special counting con-
cepts, which enable traversing this structure downwards and upwards, we align
the succeeding configurations semantically, ensuring they satisfy the constraints
of the respective ATM transitions (see Figure 5).

Let M = (Q,Σ,Γ, q0, δ) be an ATM and ω the word for which we want
to decide whether ω ∈ L(M). In the following we will construct a TBox TM
and a concept CM,ω, of a total polynomial size in the size of the input, such
that ω ∈ L(M) iff CM,ω is satisfiable w.r.t. global TM in (DAltn)ALC . The
encoding is constructed incrementally and provided with extensive explanations
on the way.

First we define the set of DAlt modal operators:

alphabet modalities: ©a, for every a ∈ Γ,

transition modalities: ©q,a,m, for every (q, a,m) ∈ Θ, where Θ = {(q, a,m) |
(q′, b, q, a,m) ∈ δ for any b ∈ Γ and q′ ∈ Q},

and introduce the following abbreviations (for any concept B):

2B =
d

a∈Γ

©aB,

3B =
⊔
a∈Γ

©aB,

�B =
d

(q,a,m)∈Θ

©q,a,mB,

�B =
⊔

(q,a,m)∈Θ

©q,a,mB.
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In the encoding we use several counters, consisting of a number of inclusions
of a total polynomial size, which allow to identify distances on the branches of
the same fixed length 2n. Constraints (1)-(5) implement an exemplary downward
counter, based on atomic concepts Xi, for 1 ≤ i ≤ n, which simulate bits in a
binary number (X1 stands for the least significant bit). The counting is initiated
on d ∈ ∆ whenever d instantiates concept Countd. In every successor DAlt-
world along the alphabet modalities, d becomes then an instance of a concept
description, representing the consecutive number, which uniquely determines
the distance from the world in which the counting was initiated. The counter
turns the full loop, back to Countd, in periods of 2n.

Countd ≡
nl

j=1

¬Xj , (1)

¬Xi u ¬Xj v 2¬Xi, for every 1 ≤ j < i ≤ n, (2)

Xi u ¬Xj v 2Xi, for every 1 ≤ j < i ≤ n, (3)

¬Xj uXj−1 u . . . uX1 v 2Xj , for every 1 ≤ j ≤ n, (4)

Xj uXj−1 u . . . uX1 v 2¬Xj , for every 1 ≤ j ≤ n. (5)

An alternative upward counter, initiated with Countu and implemented via
template (6)-(10), behaves exactly the same way, with the only difference that
the counting proceeds along the alphabet modalities up the branch of the model.

Countu ≡
nl

j=1

Xj , (6)

3(Xi uXj) v Xi, for every 1 ≤ j < i ≤ n, (7)

3(¬Xi uXj) v ¬Xi, for every 1 ≤ j < i ≤ n, (8)

3(Xj u ¬Xj−1 u . . . u ¬X1) v ¬Xj , for every 1 ≤ j ≤ n, (9)

3(¬Xj u ¬Xj−1 u . . . u ¬X1) v Xj , for every 1 ≤ j ≤ n. (10)

We can now introduce a fresh downward counter Count taped :

Count taped ≡
nl

j=1

¬Rj , (11)

and define constraints which encode a single tape on a branch of a model. In
(12) we define the beginning of such a tape, in (13) its end, while with (14)-(16)
we ensure that there is a unique path connecting the two. Note that whenever
an individual d instantiates concept StartTape, it becomes an instance of Tape
for exactly 2n succeeding worlds along a unique path of alphabet modalities. We
will consider such a path as determining the content of the tape, as presented
in Figure 4. In fact, in our models we will need only one such individual which
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will single out the whole structure of the ATM tree. Constraint (16) ensures
that the blank symbol is followed only by blank symbols on the tape.

StartTape ≡ Tape u Count taped , (12)

EndTape ≡ Tape u3Count taped , (13)

Tape u ¬EndTape v 3Tape, (14)

3(Tape u ¬StartTape) v Tape, (15)

©a Tape u©bTape v ⊥, for every a 6= b ∈ Γ, (16)

©∅ (Tape u©aTape) v ⊥, for every a 6= ∅ ∈ Γ. (17)

Further, we implement the transitions by transferring the necessary infor-
mation downwards or upwards the branches of a (DAltn)ALC-tree-model, as
depicted in Figure 5.

For the downward part, we introduce new concept names Qq for every q ∈
Q and Mq,a,m for every (q, a,m) ∈ Θ, as well as a fresh downward counter

Countheadd (18) for measuring the distance from the original position of the head.
The Qq concepts denote the current state and the position of the head, while
the others serve for carrying the information about the following transitions.
Information about the transitions is generated depending on whether the state
is universal (19) or existential (20) and then carried to the end of the tape.
There the transitions take place (21)-(22) and new tapes are initiated.

Countheadd ≡
nl

j=1

¬Sj , (18)

©a(Qq u Tape) v ©a(
l

(q′b′m)∈δ(q,a)

Mq′,b,m u Countheadd ), (19)

for every a ∈ Γ, q ∈ Q∀,

©a(Qq u Tape) v ©a(
⊔

(q′b′m)∈δ(q,a)

Mq′,b,m u Countheadd ), (20)

for every a ∈ Γ, q ∈ Q∃,

Mq,a,m v 2Mq,a,m, (21)

Mq,a,m u EndTape v ©q,a,m3StartTape, for every (q, a,m) ∈ Θ. (22)

Note that, once we move along a transition modality, starting a new off-
spring of the computation, the concepts Mq,a,m as well as the counters are not
carried along. This is intended, as we want to avoid potential clashes with
the information generated on the succeeding tapes. However, we still need to
inform the new offsprings about their configurations. To this end we create
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Figure 5: A transition between succeeding configurations in (DAltn)ALC-tree-
models for n = 2 and (q′, c, l) ∈ δ(q, b).

copies Nq,a,m for all concepts Mq,a,m, which continue to carry their information
over the new tape (23)-(24). Further, we introduce a fresh downward counter
Count∗headd , which proceeds with the counting exactly from the point where
the previous head counter terminated (25)-(27). Its use is necessary to avoid
potential clashes between head counters initiated on two consecutive tapes. Ob-
viously, the positions of the head over two such tapes might be separated by
exactly 2n counting steps (when the head stays at the same position), but not
only: also 2n − 1 (whenever the head moves leftwards) or 2n + 1 (whenever the
head moves rightwards). This observation is reflected in the constraints (28)-
(30), which introduce some handy abbreviations used further for imposing the
new configuration.

Mq,a,m v ©q,a,mNq,a,m, (23)

Nq,a,m v 2Nq,a,m, (24)

Count∗headd ≡
nl

j=1

¬Tj , (25)

Si v �Ti, for every 1 ≤ i ≤ n, (26)
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¬Si v �¬Ti, for every 1 ≤ i ≤ n, (27)

Count∗headd − 1 ≡ Head l, (28)

Count∗headd ≡ Headn, (29)

Count∗headd + 1 ≡ Headr. (30)

The necessary changes in the configuration are imposed through constraints
(31)-(32), which place the head in the appropriate position, marking it with the
new state concept, and force the old position to be overwritten with the new
symbol. The inclusions (33)-(34) ensure that the transition does not push the
head beyond the tape.

Nq,a,m u Tape uHeadm v Qq, for every (q, a,m) ∈ Θ, (31)

©b (Nq,a,m uTape uHeadn) v ⊥, for every (q, a,m) ∈ Θ and b 6= a ∈ Γ, (32)

Headn u StartTape v ¬Nq,a,l, for every q ∈ Q, a ∈ Γ, (33)

Headn u EndTape v ¬Nq,a,r, for every q ∈ Q, a ∈ Γ. (34)

In the opposite direction we will transfer the information about the content of
the cells which are not meant to change during the transition. This information
is carried by newly generated ‘representatives’, i.e., new r-successors of the
individual instantiating Tape. Observe that since our models are tree-shaped,
it follows that whenever the representative reaches the 2n-th ancestor world
(upwards the alphabet modalities and one transition modality), it is exactly the
world which holds the previous version of the represented cell. This enables us to
align the content of the two versions. In a similar way as before, we introduce
two fresh upward counters which are synchronized at the point of transition
(35)-(38).

Countcellu ≡
nl

j=1

Uj , (35)

Count∗cellu ≡
nl

j=1

Vj , (36)

�Ui v Vi, for every 1 ≤ i ≤ n, (37)

�¬Ui v ¬Vi, for every 1 ≤ i ≤ n. (38)

At the same time, for each a ∈ Γ we introduce two concept names Wa, Sa,
whose interpretation is propagated upwards the alphabet modalities (39)-(40)
and aligned at the transition point (41). Constraint (42) generates a represen-
tative of each cell (except for the one that has been changed, marked with the
concept Headn), and equips it with the concept W describing the cell’s content.
Once this information arrives to the previous version of that cell we prevent the
cells from having different content (43).

3Wa vWa, for every a ∈ Γ, (39)
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3Sa v Sa, for every a ∈ Γ, (40)

�Wa v Sa, for every a ∈ Γ, (41)

©a (Tape u ¬Headn) v ©a∃r.(Countcellu uWa), for every a ∈ Γ, (42)

©a (Sb u Count∗cellu ) v ⊥, for every b 6= a ∈ Γ. (43)

Finally, it suffices to ensure that nowhere in the model is the rejecting state
satisfied:

> v ¬Qqr . (44)

This completes the construction of the TBox TM. The initial configuration q0ω
is encoded as concept CM,ω. Let ω = a1 . . . an. For 2 ≤ i ≤ n define recursively:

Ai = ©ai(Tape uAi+1),
An+1 = ©∅Tape.

Then CM,ω = ©a1(StartTape u Qq0 u A2). We conclude by demonstrating
validity of the target claim:

Lemma 2 ω ∈ L(M) iff CM,ω is satisfiable w.r.t. global TM in (DAltn)ALC.

Proof. (⇒) Suppose ω ∈ L(M) and T is an ATM computation tree ac-
cepting ω. We roughly sketch the construction of a model M = (W, {<x
}x∈Γ∪Θ,∆, {·I(w)}w∈W) of TM satisfying CM,ω.

We assume that each tape associated with a configuration in T is of length
exactly 2n. Let t(i, ωqω′) be a function returning the i-th symbol from the tape
containing ωω′, and h(ωqω′) a function returning the position of the head over
that tape. Let q0ω be the initial configuration and w ∈W the root of M. Then

for some d ∈ ∆ set d ∈ CI(w)
M,ω . Then encode the tape of q0ω starting from w,

according to the following inductive procedure. Given a tape of ωqω′ and the
world w ∈ W in which the encoding starts, set i := 1 and x := w and proceed
recursively until i = 2n + 1:

1. pick w ∈W such that x <t(i,ωqω′) w;

2. set d ∈ TapeI(w);

3. if i = 1 then set d ∈ StartTapeI(w) and d ∈ (Count taped )I(w);

4. if i = h(ωqω′) then set d ∈ QI(w)
q , d ∈ (Countheadd )I(w) and for all transi-

tions (q, a,m) from ωqω′ performed on T , d ∈MI(w)
q,a,m;

5. if i = 2n then set d ∈ EndTapeI(w);

6. set (d, e) ∈ rI(w) for some fresh e ∈ ∆, e ∈ W
I(w)
t(i,ωqω′) and

e ∈ (Countcellu )I(w);

7. set i := i+ 1 and x := w.

46



Then for every transition (q, a,m) from ωqω′ in T , resulting in the succeeding
configuration $q′$′, pick the world w ∈ W such that x <q,a,m w and repeat
the procedure above for the tape of $q′$′ starting from the world w. Once the
halting configurations are encoded, fix the interpretations of the bit concepts
associated with the respective counters and propagate the interpretations of
selected concepts as follows:

• Mq,a,m and Nq,a,m for every (q, a,m) ∈ Θ: downwards along relations <x
for all x ∈ Γ;

• Wa and Sa for every a ∈ Γ: upwards along relations the <x for all x ∈ Γ.

In the worlds representing the transition points, ensure the proper alignment
of the interpretations of the concept pairs Mq,a,m – Nq,a,m and Wa – Sa, as

well as the bit concepts of the counters Countheadd – Count∗headd and Countcelld

– Count∗celld .

(⇐) This direction of the claim follows straightforwardly from the reduction. In
order to retrieve an ATM tree accepting ω from a (DAltn)ALC-tree-model we

only need to pick an individual d, such that d ∈ CI(w0)
M,ω and follow the paths of

worlds w ∈W for which d ∈ TapeI(w), just as presented in Figure 4. On the way
we collect information about the entire configuration. Two important comments
are in order. First, note that the reduction is somewhat underconstrained in the
sense that the models might represent also some surplus states or transitions.
However, the proper computation tree, i.e., the one directly enforced by the
encoding, has to appear within this structure. Secondly, we recall that the ATM
trees we consider are all finite. Since the transitions in the reduction properly
simulate those of an ATM, therefore the trees embedded in (DAltn)ALC-tree-
models have to be also finite, even though the models themselves are always
infinite. q
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