Automated Reasoning in Artificial Intelligence:

Introduction to Description Logic

Szymon Klarman

 $(\mathit{part}\ \mathit{of}\ \mathit{the}\ \mathit{content}\ \mathit{based}\ \mathit{on}\ \mathit{the}\ \mathit{tutorial}\ \mathit{by}\ \mathbf{Stefan}\ \mathbf{Schlobach})$

szymon.klarman@gmail.com

VU University Amsterdam, 2009-2012

Plan for today

- \bullet Tableau algorithm for \mathcal{ALC} with empty TBoxes
- Soundness, completeness, termination
- Reasoning w.r.t. non-empty TBoxes

Reasoning over DL knowledge bases

There are many different reasoning problems but we would strongly prefer having one universal reasoner (generic problem solver).

General strategy:

- **1** Choose one type of problems φ and design a reasoner for solving it.
- **2** For any problem ψ , reduce ψ to φ , so that:
 - answer to ψ ? is YES \Leftrightarrow answer to φ ? is YES.
- **3** Solve φ using the reasoner and translate the answer adequately.

Problem solver (DL reasoner):

Tableau algorithm deciding consistency of the ABox w.r.t. the TBox.

Szymon Klarman 2 / 1

Reasoning as model finding

Recall that for $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, we say that \mathcal{A} is *consistent* w.r.t. \mathcal{T} iff there *exists a model* for \mathcal{A} and \mathcal{T} , i.e. an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \mathcal{I})$ satisfying all axioms in \mathcal{A} and \mathcal{T} .

Note: this problem is also called *deciding satisfiability* of \mathcal{K} .

The most natural way of solving this problem is to... try to $find\ a$ model for A and T.

Let's try:

Decide whether \mathcal{A} is consistent w.r.t. \mathcal{T} , where:

- \mathcal{T} : $Artist \equiv \exists created.Sculpture \sqcup \exists painted.Artwork$ $Painting \sqsubseteq Artwork \sqcap \neg Sculpture$ $Painter \sqsubseteq Artist \sqcap \forall created.Painting$
- A: rembrandt : Painter (rembrandt, nightwatch) : created

Tableau algorithm: overview

Tableau is a *refutation proof system*. It performs a search through the tree of possible models of the input. It *succeeds* (delivers a proof) *iff* the input is *inconsistent* (there is no model).

```
Input: ABox A: for now we assume T = \emptyset
```

Procedure:

- Set A as the root of the tree.
- Apply *tableau expansion rules* to the formulas on the branches.

 (*) Rules add new assertions on a branch and/or create new branches.
- IF a branch contains a clash: {a: A, a: ¬A} or {a: ⊥}
 THEN mark the branch as closed;
 ELSE continue expansion until no more rules apply.

Output:

- IF all branches close RETURN: A is INCONSISTENT.
- IF there exists an open branch RETURN: A is CONSISTENT.

Negation Normal Form

To reduce the number of tableau rules we can assume that all concepts in the input appear in Negation Normal Form (NNF).

$$\neg \top \Rightarrow \bot$$

$$\neg \bot \Rightarrow \top$$

$$\neg A \Rightarrow \neg A$$

$$\neg (\neg C) \Rightarrow C$$

$$\neg (C \sqcap D) \Rightarrow \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \Rightarrow \neg C \sqcap \neg D$$

$$\neg \exists r. C \Rightarrow \forall r. \neg C$$

$$\neg \forall r. C \Rightarrow \exists r. \neg C$$

Example:

$$NNF(A \sqcap \neg \exists r.((D \sqcap \forall r.E) \sqcup \neg C)) = A \sqcap \forall r.\neg((D \sqcap \forall r.E) \sqcup \neg C)$$

$$= A \sqcap \forall r.(\neg(D \sqcap \forall r.E) \sqcap \neg \neg C)$$

$$= A \sqcap \forall r.((\neg D \sqcup \neg \forall r.E) \sqcap C)$$

$$= A \sqcap \forall r.((\neg D \sqcup \exists r.\neg E) \sqcap C)$$

Tableau rules

A branch of a tableau is a set of ABox assertions. For any branch S, the following rules apply:

```
⇒<sub>□</sub> IF (a: C \sqcap D) \in S THEN S' := S \cup \{a: C, a: D\}

⇒<sub>□</sub> IF (a: C \sqcup D) \in S THEN S' := S \cup \{a: C\} or S' := S \cup \{a: D\}

⇒<sub>∃</sub> IF (a: \exists r.C) \in S THEN S' := S \cup \{(a,b): r, b: C\}

where b is a 'fresh' individual name in S

⇒<sub>∀</sub> IF (a: \forall r.C) \in S and (a,b): r \in S THEN S' := S \cup \{b: C\}

⇒<sub>×</sub> IF \{a: A, a: \neg A\} \subseteq S or (a: \bot) \in S THEN mark the branch as CLOSED
```

Note:

- A rule should fire only once on a given match.
- The order in which the rules are applied is not determined in principle. We only assume "fairness".

Problem: Is $\exists r.A \sqcap \exists r.B$ subsumed by $\exists r.(A \sqcap B)$?

Reduction: Is $(\exists r.A \cap \exists r.B) \cap \neg \exists r.(A \cap B)$ unsatisfiable?

Is $\mathcal{A} = \{a : \exists r.A \cap \exists r.B \cap \neg \exists r.(A \cap B)\}$ inconsistent?

Input: $NNF(A) = \{a : \exists r.A \cap \exists r.B \cap \forall r.(\neg A \sqcup \neg B)\}$

Procedure: ...compute a tableau proof for A

Tableau proof:

1. $a: \exists r.A \cap \exists r.B \cap \forall r.(\neg A \sqcup \neg B)$

```
      1. a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)
      \mathcal{A}

      2. a: \exists r.A
      (\Rightarrow_{\sqcap}: 1)

      3. a: \exists r.B
      (\Rightarrow_{\sqcap}: 1)

      4. a: \forall r.(\neg A \sqcup \neg B)
      (\Rightarrow_{\sqcap}: 1)

      5. (a,b): r
      (\Rightarrow_{\exists}: 2)

      6. b: A
      (\Rightarrow_{\exists}: 2)
```

```
a: \exists r.A \cap \exists r.B \cap \forall r.(\neg A \sqcup \neg B)
                                                                                              (\Rightarrow_{\sqcap}: 1)
(\Rightarrow_{\sqcap}: 1)
(\Rightarrow_{\sqcap}: 1)
2.
                                       a:\exists r.A
3.
                                       a:\exists r.B
                            a: \forall r.(\neg A \sqcup \neg B)
4.
                                                                                               (\Rightarrow_{\exists}: 2)
5.
                                       (a, b) : r
6.
                                          b:A
                                                                                               (\Rightarrow_{\exists}: 2)
7.
                                       (a,c):r
                                                                                               (\Rightarrow_{\exists}: 3)
                                                                                               (\Rightarrow \exists : 3)
8.
                                           c:B
```

1.	$a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)$	${\cal A}$
2.	$a:\exists r.A$	$(\Rightarrow_{\sqcap}: 1)$
3.	$a:\exists r.B$	$(\Rightarrow_{\sqcap}: 1)$
4.	$a: \forall r.(\neg A \sqcup \neg B)$	$(\Rightarrow_{\sqcap}: 1)$
5.	(a,b):r	$(\Rightarrow_{\exists}: 2)$
6.	b:A	$(\Rightarrow_{\exists}: 2)$
7.	(a,c):r	$(\Rightarrow_{\exists}: 3)$
8.	c:B	$(\Rightarrow_{\exists}: 3)$
9.	$b: \neg A \sqcup \neg B$	$(\Rightarrow_{\forall}: 4.5)$

```
a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)
                                                                                     (\Rightarrow_{\sqcap}: 1)
 2.
                                    a:\exists r.A
 3.
                                    a:\exists r.B
                                                                                     (\Rightarrow_{\sqcap}: 1)
                          a: \forall r.(\neg A \sqcup \neg B)
4.
 5.
                                    (a, b) : r
                                                                                      (\Rightarrow \exists : 2)
                                                                                     (\Rightarrow_{\exists}: 2)
 6.
                                       b:A
 7.
                                    (a,c):r
                                                                                      (\Rightarrow \exists : 3)
 8.
                                       c:B
                                                                                     (\Rightarrow_{\exists}: 3)
 9.
                              b: \neg A \sqcup \neg B
                                                                                    (\Rightarrow_{\forall}: 4,5)
                                                                                    (\Rightarrow_{\forall}: 4,7)
10.
                               c: \neg A \sqcup \neg B
```

```
a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)
                                                                                                     (\Rightarrow_{\sqcap}: 1)
                  2.
                                                     a: \exists r.A
                  3.
                                                    a:\exists r.B
                                                                                                      (\Rightarrow_{\square}: 1)
                                                                                                     (\Rightarrow_{\square}: 1)
                  4.
                                           a: \forall r.(\neg A \sqcup \neg B)
                  5.
                                                    (a, b) : r
                                                                                                      (\Rightarrow \exists : 2)
                                                       b:A
                  6.
                                                                                                      (\Rightarrow \exists : 2)
                  7.
                                                    (a, c) : r
                                                                                                     (\Rightarrow \exists : 3)
                  8.
                                                        c:B
                                                                                                     (\Rightarrow \exists : 3)
                                               b: \neg A \sqcup \neg B
                                                                                                    (\Rightarrow_{\forall}: 4.5)
                  9.
                                                c: \neg A \sqcup \neg B
                                                                                                    (\Rightarrow_{\forall}: 4.7)
                 10.
 11. b: \neg A \quad (\Rightarrow_{\sqcup}: 9)
                                                                     12. b: \neg B \quad (\Rightarrow_{\sqcup} : 9)
               \times (6, 11)
13. c: \neg A \quad (\Rightarrow_{\sqcup}: 10)
                                                                    14. c: \neg B \quad (\Rightarrow_{\sqcup}: 10)
                                                                                    \times (8, 14)
```

...there exists an open branch in the tableau, hence:

```
Output: \{a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)\}\ is CONSISTENT (\exists r.A \sqcap \exists r.B) \sqcap (\neg \exists r.(A \sqcap B))\ is SATISFIABLE \exists r.A \sqcap \exists r.B\ is NOT SUBSUMED by \exists r.(A \sqcap B)
```

Can we be sure?

Construct a *canonical model* $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ of the ABox from the open branch:

- use the individual names from the branch to define the domain,
- use the atomic assertions of the form a:A and (a,b):r to define an interpretation of the vocabulary.

Szymon Klarman 9 / 1

Example

Branch	Canonical model
$a: \exists r.A \sqcap \exists r.B \sqcap \forall r.(\neg A \sqcup \neg B)$	
$a:\exists r.A$	
$a:\exists r.B$	
$a: \forall r.(\neg A \sqcup \neg B)$	
(a,b):r	$\Delta^{\mathcal{I}} = \{a, b, c\}$
$\hat{b}:\hat{A}$	$A^{\mathcal{I}} = \{b\}$
(a,c):r	$B^{\mathcal{I}} = \{c\}$
c: B	$r^{\mathcal{I}} = \{(a, b), (a, c)\}$
$b: \neg A \sqcup \neg B$	
$c: \neg A \sqcup \neg B$	
$b: \neg B$	
$c: \neg A$	

Clearly, \mathcal{I} is a model of $\{a: \exists r.A \cap \exists r.B \cap \forall r.(\neg A \sqcup \neg B)\}.$

Exercise: reasoning

Problem: Is $\forall created.Painting \sqcap \exists created. \top$ subsumed by $\exists created.Painting$?

Exercise: reasoning

Problem: Is $\forall created.Painting \sqcap \exists created. \top$ subsumed by $\exists created.Painting$?

Input: $\{a : \forall created. Painting \sqcap \exists created. \top \sqcap \forall created. \neg Painting\}$

Proof:

1.	$a: \forall created. Painting \sqcap \exists created. \top \sqcap \forall created. \neg Painting$	${\mathcal A}$
2.	$a: \forall created. Painting$	$(\Rightarrow_{\sqcap}: 1)$
3.	$a:\exists created. op$	$(\Rightarrow_{\sqcap}: 1)$
4.	$a: \forall created. \neg Painting$	$(\Rightarrow_{\sqcap}: 1)$
5.	(a,b): created	$(\Rightarrow_{\exists}: 3)$
6.	b: op	$(\Rightarrow_{\exists}: 3)$
7.	b: Painting	$(\Rightarrow_{\forall}: 2,5)$
8.	$b: \neg Painting$	$(\Rightarrow_{\forall}: 4.5)$
	\times (7,8)	

Output:

Exercise: reasoning

Problem: Is $\forall created.Painting \sqcap \exists created. \vdash \text{ subsumed by } \exists created.Painting ?$

Input: $\{a: \forall created. Painting \sqcap \exists created. \top \sqcap \forall created. \neg Painting\}$

```
Proof:
```

1.	$a: \forall created. Painting \sqcap \exists created. \top \sqcap \forall created. \neg Painting$	${\mathcal A}$
2.	$a: \forall created. Painting$	$(\Rightarrow_{\sqcap}: 1)$
3.	$a: \exists created. \top$	$(\Rightarrow_{\sqcap}: 1)$
4.	$a: \forall created. \neg Painting$	$(\Rightarrow_{\sqcap}: 1)$
5.	(a,b): created	$(\Rightarrow_{\exists}: 3)$
6.	b: op	$(\Rightarrow_{\exists}: 3)$
7.	b: Painting	$(\Rightarrow_{\forall}: 2,5)$
8.	$b: \neg Painting$	$(\Rightarrow_{\forall}: 4.5)$
	\times (7,8)	

Output: Yes, it is SUBSUMED.

Exercise: constructing canonical model

Construct a canonical model for the following open branch:

```
a: \forall created. Painting
```

 $a:\exists created. \top$

 $a: \forall created. \neg Sculpture$

(a,b): created

 $b: \top$

b: Painting

 $b: \neg Sculpture$

Solution:

Exercise: constructing canonical model

Construct a canonical model for the following open branch:

```
a: \forall created. Painting
```

 $a:\exists created. \top$

 $a: \forall created. \neg Sculpture$

(a,b): created

 $b: \top$

b: Painting

 $b: \neg Sculpture$

Solution:

- $\Delta^{\mathcal{I}} = \{a, b\}$
- $Painting^{\mathcal{I}} = \{b\}$
- $Sculpture^{\mathcal{I}} = \emptyset$
- $created^{\mathcal{I}} = \{(a,b)\}$

Correctness

The key computational properties are given via three theorems:

- soundness: the algorithm proves only conclusions that are "really" true
 - \Leftrightarrow IF the tableau proof succeeds, i.e. it closes on some input, THEN the input is inconsistent
 - \Leftrightarrow IF the input is consistent THEN the tableau does not close

Proof: show that the tableau *rules preserve consistency*, i.e. whenever the branch is consistent before an application of a rule then after it, there must still exist at least one consistent branch.

- completeness: the algorithm can prove every true conclusion
 - ⇔ IF the input is inconsistent THEN the algorithm proves it, i.e. it closes
 - \Leftrightarrow IF the algorithm does not close THEN the input is consistent

Proof: show that it is always possible to *construct a model of the input* from an open branch.

Szymon Klarman 13 / 1

Termination

• termination: The algorithm always returns an answer after a finite number of inference steps.

Proof: The size of the resulting tableau is bounded by the size of the input (which is finite):

- applications of \Rightarrow_{\square} and \Rightarrow_{\square} result in strictly shorter formulas,
- for any a, the number of its successors generated by \Rightarrow_\exists rule is limited by the number of assertions of type $a: \exists r.C$,
- for any (a,b):r, the number of possible applications of \Rightarrow_{\forall} rule is limited by the number of assertions of type $a:\forall r.C$.
- complexity: with empty TBoxes, the tableau algorithm is PSPACE-complete.

Szymon Klarman 14 / 1

Reasoning with non-empty TBoxes

In order to account for the TBox \mathcal{T} , the tableau procedure has to be extended as follows:

Input:

- Replace every $C \equiv D \in \mathcal{T}$ with $C \sqsubseteq D$ and $D \sqsubseteq C$.
- Replace every $C \sqsubseteq D \in \mathcal{T}$ with $\top \equiv NNF(\neg C \sqcup D)$.
- Add \mathcal{T} to the root of the tableau.

Tableau rule:

$$\Rightarrow_{\equiv}$$
 IF $(\top \equiv C) \in S$ **and** an individual a occurs in S **THEN** $S' := S \cup \{a : C\}$

Note: $T \equiv C$ indeed means that EVERY individual in any model must be C.

Szymon Klarman 15 / 1

Problem: Is C satisfiable w.r.t. $\mathcal{T} = \{C \subseteq D, C \subseteq \neg D\}$?

1.
$$\top \equiv \neg C \sqcup D$$

$$2. \quad \top \equiv \neg C \sqcup \neg D \qquad \qquad \mathcal{T}$$

3.
$$a:C$$
 \mathcal{A}

Problem: Is C satisfiable w.r.t. $\mathcal{T} = \{C \subseteq D, C \subseteq \neg D\}$?

$$\begin{array}{llll} 1. & \top \equiv \neg C \sqcup D & \mathcal{T} \\ 2. & \top \equiv \neg C \sqcup \neg D & \mathcal{T} \\ 3. & a:C & \mathcal{A} \\ 4. & a:\neg C \sqcup D & (\Rightarrow_{\equiv}:1,3) \\ 5. & a:\neg C \sqcup \neg D & (\Rightarrow_{\equiv}:2,3) \end{array}$$

Problem: Is C satisfiable w.r.t. $\mathcal{T} = \{C \subseteq D, C \subseteq \neg D\}$?

Tableau proof:

1.
$$\top \equiv \neg C \sqcup D$$
 \mathcal{T}
2. $\top \equiv \neg C \sqcup \neg D$ \mathcal{T}
3. $a:C$ \mathcal{A}
4. $a:\neg C \sqcup D$ $(\Rightarrow_{\equiv}:1,3)$
5. $a:\neg C \sqcup \neg D$ $(\Rightarrow_{\equiv}:2,3)$
6. $a:\neg C$ $(\Rightarrow_{\sqcup}:4)$ $7.$ $a:D$ $(\Rightarrow_{\sqcup}:4)$
 $\times (1,6)$

Szymon Klarman 16 / 1

Problem: Is C satisfiable w.r.t. $\mathcal{T} = \{C \subseteq D, C \subseteq \neg D\}$?

Tableau proof:

Output: C is UNSATISFIABLE w.r.t. \mathcal{T}

Reasoning with non-empty TBoxes

- Soundness and completeness hold with small changes in proofs.
- The complexity is actually NEXPTIME-complete.
- Termination requires an additional supporting mechanism.

Termination:

Consider any input containing an axiom of the form: $\top \equiv ... \exists r.C...$ A straightforward application of the rules \Rightarrow_{\exists} and \Rightarrow_{\equiv} might lead to an infinite expansion of the tableau tree.

Solution: Detect cycles and prevent further application of the \Rightarrow_\exists rule. This is achieved by a special *blocking rule*.

Szymon Klarman 17 / 1

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

1.
$$\top \equiv \exists r.C$$
 \mathcal{T}
2. $a:B$ \mathcal{A}

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

- $\begin{array}{lll} 1. & \top \equiv \exists r.C & \mathcal{T} \\ 2. & a:B & \mathcal{A} \\ 3. & a: \exists r.C & (\Rightarrow_{\equiv}:1,\,2) \end{array}$

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

- $\begin{array}{lll} 1. & \top \equiv \exists r.C & \mathcal{T} \\ 2. & a:B & \mathcal{A} \\ 3. & a: \exists r.C & (\Rightarrow_{\equiv}:1,2) \end{array}$
- $4. \qquad (a,b): r \qquad (\Rightarrow_\exists : \ 3)$
- 5. b:C $(\Rightarrow \exists: 3)$

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

- $\begin{array}{ll} 1. & \top \equiv \exists r.C & \mathcal{T} \\ 2. & a:B & \mathcal{A} \end{array}$
- 3. $a: \exists r.C \quad (\Rightarrow_{\equiv}: 1, 2)$ 4. (a,b):r $(\Rightarrow_{\exists}: 3)$
- 5. b:C $(\Rightarrow_{\exists}: 3)$
- 6. $b: \exists r.C \quad (\Rightarrow \equiv 1, 4)$

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

Tableau proof:

1. $\top \equiv \exists r.C$ \mathcal{T} 2. a:B \mathcal{A} 3. $a:\exists r.C$ $(\Rightarrow_{\equiv}:1,2)$ 4. (a,b):r $(\Rightarrow_{\exists}:3)$ 5. b:C $(\Rightarrow_{\exists}:3)$ 6. $b:\exists r.C$ $(\Rightarrow_{\equiv}:1,4)$ 7. (b,c):r $(\Rightarrow_{\exists}:6)$

8. c:C $(\Rightarrow \exists : 6)$

Szymon Klarman

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

1.
$$\top \equiv \exists r.C$$
 \mathcal{T}
2. $a:B$ \mathcal{A}
3. $a:\exists r.C$ $(\Rightarrow_{\equiv}:1,2)$
4. $(a,b):r$ $(\Rightarrow_{\exists}:3)$
5. $b:C$ $(\Rightarrow_{\exists}:3)$
6. $b:\exists r.C$ $(\Rightarrow_{\equiv}:1,4)$
7. $(b,c):r$ $(\Rightarrow_{\exists}:6)$
8. $c:C$ $(\Rightarrow_{\exists}:6)$
9. $c:\exists r.C$ $(\Rightarrow_{\equiv}:1,7)$
10. ...

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

Tableau proof:

```
1. \top \equiv \exists r.C \mathcal{T}

2. a:B \mathcal{A}

3. a:\exists r.C (\Rightarrow_{\equiv}:1,2)

4. (a,b):r (\Rightarrow_{\exists}:3)

5. b:C (\Rightarrow_{\exists}:3)

6. b:\exists r.C (\Rightarrow_{\equiv}:1,4)

7. (b,c):r (\Rightarrow_{\exists}:6)

8. c:C (\Rightarrow_{\exists}:6)

9. c:\exists r.C (\Rightarrow_{\equiv}:1,7)

10. ...
```

 $\Rightarrow_{\rm B}$ **IF** b is a (possibly indirect) successor of a in S **and** it is the case that:

$$\{C \mid b : C \in S\} \subseteq \{D \mid a : D \in S\}$$

THEN mark b as BLOCKED by a in S and do not apply \Rightarrow_\exists to b

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

Tableau proof:

```
1. T \equiv \exists r.C T

2. a:B A

3. a: \exists r.C (\Rightarrow_{\equiv}: 1, 2) L_a = \{B, \exists r.C\}

4. (a,b): r (\Rightarrow_{\exists}: 3) L_b = \{C, \exists r.C\}

5. b:C (\Rightarrow_{\exists}: 3) L_c = \{C, \exists r.C\}

6. b: \exists r.C (\Rightarrow_{\equiv}: 1, 4)

7. (b,c): r (\Rightarrow_{\exists}: 6)

8. c:C (\Rightarrow_{\exists}: 6) c is BLOCKED by b

9. c: \exists r.C (\Rightarrow_{\equiv}: 1, 7) \leftarrow do not expand this anymore!
```

 $\Rightarrow_{\rm B}$ **IF** b is a (possibly indirect) successor of a in S **and** it is the case that:

$$\{C \mid b : C \in S\} \subseteq \{D \mid a : D \in S\}$$

THEN mark b as BLOCKED by a in S and do not apply \Rightarrow_\exists to b

Problem: Is B satisfiable w.r.t. $\mathcal{T} = \{ \top \equiv \exists r.C \}$?

Tableau proof:

```
1. T \equiv \exists r.C \mathcal{T}

2. a:B \mathcal{A}

3. a: \exists r.C (\Rightarrow_{\equiv}: 1, 2) L_a = \{B, \exists r.C\}

4. (a,b): r (\Rightarrow_{\exists}: 3) L_b = \{C, \exists r.C\}

5. b:C (\Rightarrow_{\exists}: 3) L_c = \{C, \exists r.C\}

6. b: \exists r.C (\Rightarrow_{\equiv}: 1, 4)

7. (b,c): r (\Rightarrow_{\exists}: 6)

8. c:C (\Rightarrow_{\exists}: 6) c is BLOCKED by b

9. c: \exists r.C (\Rightarrow_{\equiv}: 1, 7) \leftarrow do not expand this anymore!
```

Output: C is SATISFIABLE w.r.t. \mathcal{T}

Warning: to ensure completeness, the blocking rule can be applied ONLY when no other rules (apart from \Rightarrow_{\exists}) apply anymore on the branch.

Data structures for tableaux

Practical implementations of the tableau algorithm for DLs often use different *data structures* — closer to DL models. An open branch is represented as a *labeled graph*, where:

 $\begin{array}{ll} nodes \leadsto \text{individuals} & edges \leadsto \text{role relationships} \\ node \ labels \leadsto \text{concepts} & edge \ labels \leadsto \text{role names} \\ \end{array}$

Example:

1.
$$a: \exists r.A \sqcap \forall r.(C \sqcup D)$$

2. $a: \exists r.A$
3. $a: \forall r.(C \sqcup D)$
4. $(a,b): r$
5. $b: A$
6. $b: C \sqcup D$
(a) $\exists r.A \sqcap \forall r.(C \sqcup D), \exists r.A, \forall r.(C \sqcup D), r$
(b) $A, C \sqcup D, C$
(a) $\exists r.A \sqcap \forall r.(C \sqcup D), r$
(b) $a, C \sqcup D, D$

Note: The branching \Rightarrow_{11} rule involves duplicating of the branch.

Summary

- All basic reasoning problems for \mathcal{ALC} can be turned into a task of *finding a model* of the ABox and the TBox.
- Tableau algorithm is a *decision procedure*, i.e. sound, complete and terminating algorithm, employing exactly this strategy.
- Whenever the algorithm terminates and tableau is open, we can construct a *canonical model* of the input.

Resources:

F. Baader, U. Sattler. An Overview of Tableau Algorithms for Description Logics. In: Studia Logica 69(1), 2001.

(see Blackboard)

Description Logic resources: http://dl.kr.org/

Next:

- LoTREC tutorial and handing in the assignment.
- ▷ Please bring laptops with LoTREC installed http://www.irit.fr/Lotrec/

Szymon Klarman 20 / 1