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ARQ@AI Introduction to Description Logic

Plan for today

e Tableau algorithm for ALC with empty TBoxes
e Soundness, completeness, termination

e Reasoning w.r.t. non-empty TBoxes
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Reasoning over DL knowledge bases

There are many different reasoning problems but we would strongly
prefer having one universal reasoner (generic problem solver).

General strategy:

@ Choose one type of problems — ¢ — and design a reasoner for
solving it.

® For any problem 1, reduce ¥ to ¢, so that:
answer to ¢?7 is YES < answer to ¢? is YES.

® Solve  using the reasoner and translate the answer adequately.

Problem solver (DL reasoner):

Tableau algorithm deciding consistency of the ABox w.r.t. the TBou.
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Reasoning as model finding

Recall that for K = (T, .A), we say that A is consistent w.r.t. T iff
there exists a model for A and T, i.e. an interpretation Z = (AT, )
satisfying all axioms in A and 7.

Note: this problem is also called deciding satisfiability of K.

The most natural way of solving this problem is to... try to find a
model for A and T .

Let’s try:

Decide whether A is consistent w.r.t. 7, where:

T: Artist = dereated.Sculpture U Ipainted. Artwork
Painting © Artwork M —Sculpture
Painter T Artist MV created. Painting

A:  rembrandt : Painter
(rembrandt, nightwatch) : created
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Tableau algorithm: overview

Tableau is a refutation proof system. It performs a search through the
tree of possible models of the input. It succeeds (delivers a proof) iff
the input is inconsistent (there is no model).
Input: ABox A: for now we assume T = ()
Procedure:

e Set A as the root of the tree.

o Apply tableau expansion rules to the formulas on the branches.
(*) Rules add new assertions on a branch and/or create new branches.

e IF a branch contains a clash: {a: A,a:—-A} or {a: L}
THEN mark the branch as closed;
ELSE continue expansion until no more rules apply.

Output:
e IF all branches close RETURN: A4 is INCONSISTENT.
o IF there exists an open branch RETURN: A is CONSISTENT.

Szymon Klarman 4/1



ARQ@AI Introduction to Description Logic

Negation Normal Form

To reduce the number of tableau rules we can assume that all concepts
in the input appear in Negation Normal Form (NNF).

-T =1
L =T
—-A=-A
-(=C) = C
ﬁ(C[—lD) = -=CU-D
-~(CUD)=-Cn-D
—dr.C = Vr.=C
=Vr.C = Jr.-C

Example:

NNF(AN-=3r.(DNVYr.E)U-C)) = ANVr—(DNVr.E)U-C)
= ANvr.(-(DNVvr.E)N--C)
= ANvr.((-DU-=Yr.E)NC)
= ANvr.((-DU3Ir—-E)NC)
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Tableau rules

A branch of a tableau is a set of ABox assertions. For any branch S,
the following rules apply:

=n IF (a:CND)e S THEN S :=SU{a:C,a: D}
=, IF (a:CUD)e STHEN S :=SU{a:C}or §":=SU{a: D}
=3 IF (a:3r.C) € S THEN S :=SU{(a,b) : 7, b:C}
where b is a ‘fresh’ individual name in S
=v IF (a:Vr.C) € S and (a,b) : r € S THEN S := SU{b: C}
=x IF{a:A,a:-~A} C Sor (a:L)eSTHEN mark the branch as
CLOSED

Note:
o A rule should fire only once on a given match.

e The order in which the rules are applied is not determined in principle.
We only assume “fairness”.
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Problem:

Reduction:

Input:

Procedure:

Szymon Klarman

Introduction to Description Logic

Example
Is 3r.A 11 3r.B subsumed by 3r.(AMN B)?

Is (3r. AN 3r.B) M —3r.(AMN B) unsatisfiable?
IsA={a:3Ir.ANIr.BMN-3r.(AN B)} inconsistent?

NNF(A)={a:3r ANIr.BNVYr.(-AU-B)}

...compute a tableau proof for A
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Tableau proof:
1. a:FIrANFIr.BNVr(-AU-B) A



Example
Tableau proof:
1. a:FIrANFIr.BNVr(-AU-B) A
2. a:3drA (=n: 1)
3. a:3r.B (=n1)
4. a:Vr.(-AU-B) (=n: 1)



Example
Tableau proof:
1. a:FIrANFIr.BNVr(-AU-B) A
2. a:3drA (=n: 1)
3. a:3r.B (=n1)
4. a:Vr.(-AU-B) (=n: 1)
5. (a,b) :r (=3:2)
6. b: A (=3:2)
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Example
Tableau proof:

1. a:3IrANIr.BNVr.(-AU-B) A

2 a:3r.A (=n: 1)
3 a:3r.B (=n: 1)
4. a:vVr.(-AU-B) (=n: 1)
5. (a,b) : r (=3 2)
6 b: A (=3:2)
7 (a,c) :r (=3: 3)
8 c: B (=3: 3)
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Tableau proof:

Szymon Klarman

1
2
3
4.
d.
6
7
8
9

Example

a:3Ir.ANIr.BNVr.(-AU-B)
a:3dr.A
a:3dr.B
a:vVr.(-AU-B)
(a,b):r
b: A
(a,c) :r
c: B
b:-AU-B

Introduction to Description Logic
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Tableau proof:
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Example

a:3Ir.ANIr.BNVr.(-AU-B)
a:3dr.A
a:3dr.B
a:vVr.(-AU-B)
(a,b):r
b: A
(a,c) :r
c: B
b:-AU-B
c:—ALU-B

Introduction to Description Logic
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Introduction to Description Logic

Tableau proof:

11.

Szymon Klarman

Example

1. a:3IrANIr.BNVr.(-AU-B) A

2 a:3r.A (=n: 1)
3 a:3r.B (=n: 1)
4. a:vVr.(-AU-B) (=n: 1)
5. (a,b) : r (=3 2)
6 b: A (=3:2)
7 (a,c) :r (=3: 3)
8 c: B (=3: 3)
9. b:—-AU-B (=v: 4,5
10. c:—~AU-B (=v: 4,7
A (=00 9) 12. b:=-B (=u:9)

x (6,11)
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Tableau proof:

11.

13.

Szymon Klarman

Example

1. a:3IrANIr.BNVr.(-AU-B) A

2 a:3r.A (=n: 1)
3 a:3r.B (=n: 1)
4. a:vVr.(-AU-B) (=n: 1)
5. (a,b) : r (=3 2)
6 b: A (=3:2)
7 (a,c) :r (=3: 3)
8 c: B (=3: 3)
9. b:—-AU-B (=v: 4,5)
10. c:—~AU-B (=v: 4,7)

b:=A (=u:9) 12. b:=-B (=u:9)

x (6,11) __—

c:—A (=4 10) 14. ¢:

Introduction to Description Logic

-B (= 10)
x (8,14)
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Example

...there exists an open branch in the tableau, hence:

Output: {a:3Ir.ANIr.BNVr.(-AU-B)} is CONSISTENT
(3r.A1 3r.B) N (=3r.(AN B)) is SATISFIABLE
Ir. AN 3Ir.B is NOT SUBSUMED by 3r.(AMN B)

Can we be sure?
Construct a canonical model T = (A%, 1) of the ABox from the open
branch:

e use the individual names from the branch to define the domain,

e use the atomic assertions of the form a : A and (a,b) : r to define
an interpretation of the vocabulary.
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Example

Branch Canonical model
:Ir. AN Ir.BNVr.(-mAU-B)
:dr.A

:dr.B

:Vr.(mAU-B)

,b) i AT = {a,b,c}

tA AT = {b}

NORES BT = {c}

: B rT = {(a,b),(a,c)}
:—=AU-B
: =AU -B
;B

:-A

QO S0 oS40 S
ORI

Clearly, Z is a model of {a : Ir AN 3Ir.BMVr.(mAU-B)}.
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Problem: Is Vcreated. Painting N Jereated.T subsumed by
Jereated. Painting 7



ARQ@AI Introduction to Description Logic

Exercise: reasoning

Problem: Is Vereated.Painting M dereated. T subsumed by
dereated. Painting 7

Input: {a : Vereated. Painting M Jereated. T M Yereated.—~Painting}

Proof:
1.  a:Vcreated.Painting M 3created. T MVereated.—~Painting A
2. a : Vereated. Painting (=n:1)
3. a : Jereated. T (=n: 1)
4. a : Yereated.—Painting (=n: 1)
5. (a,b) : created (=3:3)
6. b: T (:>31 3)
7. b : Painting (=v: 2,5)
8. b : —Painting (=v: 4,5)

x (7,8)
Output:
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Exercise: reasoning

Problem: Is Vereated.Painting M dereated. T subsumed by
dereated. Painting 7

Input: {a : Vereated. Painting M Jereated. T M Yereated.—~Painting}

Proof:

1.  a:Vcreated.Painting M 3created. T MVereated.—~Painting A

2. a : Vereated. Painting (=n:1)
3. a : Jereated. T (=n: 1)
4. a : Yereated.—Painting (=n: 1)
5. (a,b) : created (=3:3)
6. b: T (:>31 3)
7. b : Painting (=v: 2,5)
8. b : —Painting (=v: 4,5)

x (7,8)

Output: Yes, it is SUBSUMED.
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Exercise: constructing canonical model

Construct a canonical model for the following open branch:

a : Vereated. Painting

a : Jereated. T

a : Vereated.—Sculpture
(a,b) : created

b: T

b : Painting

b : =Sculpture

Solution:
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Exercise: constructing canonical model

Construct a canonical model for the following open branch:

a : Vereated. Painting

a : Jereated. T

a : Vereated.—Sculpture
(a,b) : created

b: T

b : Painting

b : =Sculpture

Solution:

o AT ={a,b}
Painting” = {b}
Sculpturer =0
created” = {(a,b)}
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Correctness

The key computational properties are given via three theorems:

e soundness: the algorithm proves only conclusions that are “really” true
< IF the tableau proof succeeds, i.e. it closes on some input, THEN
the input is inconsistent
< IF the input is consistent THEN the tableau does not close

Proof: show that the tableau rules preserve consistency, i.e.
whenever the branch is consistent before an application of a rule
then after it, there must still exist at least one consistent branch.
e completeness: the algorithm can prove every true conclusion
< IF the input is inconsistent THEN the algorithm proves it, i.e. it
closes
& IF the algorithm does not close THEN the input is consistent

Proof: show that it is always possible to construct a model of the
input from an open branch.
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Termination

e termination: The algorithm always returns an answer after a finite
number of inference steps.

Proof: The size of the resulting tableau is bounded by the size of the
input (which is finite):
e applications of =, and = result in strictly shorter formulas,
e for any a, the number of its successors generated by =3 rule is
limited by the number of assertions of type a : Ir.C,
e for any (a,b) : r, the number of possible applications of =y rule is
limited by the number of assertions of type a : Vr.C.

e complexity: with empty TBoxes, the tableau algorithm is
PSPACE-complete.
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Reasoning with non-empty TBoxes

In order to account for the TBox T, the tableau procedure has to be
extended as follows:

Input:
e Replaceevery C=D €T with CCE D and D C C.
e Replace every C C D € T with T = NNF(-~C U D).
e Add T to the root of the tableau.

Tableau rule:
== IF (T =C) € S and an individual a occurs in S

THEN §' := SU{a: C}

Note: T = C indeed means that EVERY individual in any model must be C.
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Example

Problem: Is C satisfiable w.r.t. T ={C E D,C C -D} ?

Tableau proof:

1. T=-Cub T
2. T=-CuU-D T
3 a:C A
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Example

Problem: Is C satisfiable w.r.t. 7T ={C C D,CC =D} ?

Tableau proof:

1. T=-CubD T
2. T=-CuU-D T
3. a:C A
4. a:—-CUD (==:1,3)
5. a:-CU-D (== 2,3)
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Example

Problem: Is C satisfiable w.r.t. 7T ={C C D,CC =D} ?

Tableau proof:

1. T=-CuD T
2. T=-CU-D T
3. a:C A
4. a:—-CUD (==:1,3)
5. a:-CU-D (== 2,3)
/ \
6. a:=C (= 4) 7. a:D (= 4)

x (1,6)
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Example
Problem: Is C satisfiable w.r.t. 7T ={C C D,CC =D} ?

Tableau proof:

1. T=-CubD T
2. T=-CU-D T
3. a:C A
4. a:—-CUD (==:1,3)
5. a:-CU-D (== 2,3)
6. a:=C (= 4) 7. a:D (=4 4)
x (1,6 — |
8 a:-C (=u5H) 9. a:-D (=u:5)
x (1,8) x (7,9)

Output: C'is UNSATISFIABLE w.r.t. T
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Reasoning with non-empty TBoxes

e Soundness and completeness hold with small changes in proofs.
e The complexity is actually NEXPTIME-complete.

e Termination requires an additional supporting mechanism.

Termination:

Consider any input containing an axiom of the form: T =...3r.C...
A straightforward application of the rules =3 and == might lead to
an infinite expansion of the tableau tree.

Solution: Detect cycles and prevent further application of the =3 rule.
This is achieved by a special blocking rule.
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T = 3r.C} ?

Tableau proof:

1. T=3rC T
2. a:B A



ARQ@AI Introduction to Description Logic

Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

1. T=3arC T
2. a:B A
3. a:IC (==1,2)
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ARQ@AI Introduction to Description Logic

Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

T=3C T
a:B A

a:Ir.C (==1,2)

(a,b):r (=3 3)
b:C (=3: 3)

G 0 =
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

T=3C T
a:B A
a:Ir.C (==1,2)
(a,b):r (=3 3)
b:C (=3: 3)
b:3Ir.C (== 1,4)

A e
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

T=3C T
a:B A
a:Ir.C (==1,2)
(a,b):r (=3 3)
b:C (=3: 3)
b:3Ir.C (== 1,4)
(b,c) : r (=3: 6)
c:C (=3: 6)

I I ol o e
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

1. T=3arC T

2. a:B A

3. a:IC (==1,2)
4. (a,b):r (=3 3)
5. b:C (=3: 3)
6. b:3Ir.C (== 1,4)
7. (b :r (=3: 6)
8. c:C (=3: 6)
9. ¢:IrC (==1,7)
10.
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

1. T=3arC T

2. a:B A

3. a:IC (==1,2)
4. (a,b):r (=3 3)
5. b:C (=3: 3)
6. b:3Ir.C (== 1,4)
7. (b :r (=3: 6)
8. c:C (=3: 6)
9. ¢:IrC (==1,7)
10.

=g IF bis a (possibly indirect) successor of a in S and it is the case that:
{C|b:CeS}C{D|a:DceS}
THEN mark b as BLOCKED by a in S and do not apply =3 to b
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

T=3C T
a:B A
a:Ir.C (==1,2) L,={B,3r.C}
(a,b) : r (=3: 3) L, ={C,3r.C}
b:C (=3: 3) L.={C,3r.C}

b:3Ir.C (== 1,4)
(b,c) : r (=3: 6)

c:C (=3: 6) c is BLOCKED by b
c:3Ir.C  (==:1,7) < donot expand this anymore!

© XN O W=

=g IF bis a (possibly indirect) successor of a in S and it is the case that:
{C|b:CeS}C{D|a:DceS}
THEN mark b as BLOCKED by a in S and do not apply =3 to b
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Blocking example
Problem: Is B satisfiable w.r.t. 7 ={T =3r.C} ?

Tableau proof:

T=3rC T
a:B A
a:Ir.C (==1,2) L,={B,3r.C}
(a,b) : r (=3: 3) L, ={C,3r.C}
b:C (=3: 3) L.={C,3r.C}

b:3Ir.C (== 1,4)
(b,c) : r (=3: 6)

c:C (=3: 6) c is BLOCKED by b
c:3Ir.C  (==:1,7) < donot expand this anymore!

© XN O W=

Output: C' is SATISFIABLE w.r.t. T

Warning: to ensure completeness, the blocking rule can be applied ONLY
when no other rules (apart from =-3) apply anymore on the branch.
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Data structures for tableaux

Practical implementations of the tableau algorithm for DLs often use
different data structures — closer to DL models. An open branch is
represented as a labeled graph, where:

nodes ~~ individuals edges ~~ role relationships
node labels ~» concepts edge labels ~» role names
Example:
1. a:3Ir.ANVr(CUD)
2. a:3dr.A
3. a:vYr.(CUD) @ Ir.ANVvr.(CUD), @ Ir.,Anvr.(CuD),
4. (a,b) : 7 Ir.A, Vr.(C'U D) Ir.A, Vr.(CLU D)
5. b : A r r
6. b:CuD
/\ (b) A, CuD, C (b) A, CuD, D
7. b:C 8. b:D

Note: The branching =, rule involves duplicating of the branch.
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Summary

e All basic reasoning problems for ALC can be turned into a task of
finding a model of the ABox and the TBox.

e Tableau algorithm is a decision procedure, i.e. sound, complete and
terminating algorithm, employing exactly this strategy.

e Whenever the algorithm terminates and tableau is open, we can
construct a canonical model of the input.

Resources:
F. Baader, U. Sattler. An Overview of Tableau Algorithms for Description Logics.
In: Studia Logica 69(1), 2001.

(see Blackboard)

Description Logic resources: http://dl.kr.org/

Next:

e LoTREC tutorial and handing in the assignment.
> Please bring laptops with LoTREC installed
http://www.irit.fr/Lotrec/
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