Automated Reasoning in Artificial Intelligence: INTRODUCTION TO DESCRIPTION LOGIC

Szymon Klarman

(part of the content based on the tutorial by Stefan Schlobach)

szymon.klarman@gmail.com

VU University Amsterdam, 2009-2012

Plan for today

- Description Logic knowledge bases
- Representing knowledge bases in Protégé
- Reasoning tasks and their reduction

$\mathcal{ALC}:$ syntax and semantics

Syntax:

- concept names: A, B, C...; e.g.: Man, Parent, Car,
- role names: r, s...; e.g.: biggerThan, likes, locatedIn,
- concept constructors: \top , A, $\neg C$, $C \sqcap D$, $C \sqcup D$, $\exists r.C$, $\forall r.C$,
- * *individual names*: *a*, *b*...; e.g.: *john*, *europe*, *snoopy*.

Semantics:

An interpretation is a pair $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is a non-empty *domain of individuals* and $\cdot^{\mathcal{I}}$ is an *interpretation function*, which maps:

•
$$\top^{\mathcal{I}} = \Delta^{\mathcal{I}},$$

- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for every concept name A,
- $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for every role name r,
- \mathcal{I} is extended inductively over complex concepts,
- $\star a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for every individual name *a*.

DL Knowledge Base

A DL knowledge base (alt. ontology) $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ consists of:

- *TBox* \mathcal{T} , i.e. terminology,
- *ABox* \mathcal{A} , i.e. assertions about individuals.

TBox: Syntax

Knowledge about relationships between concepts is expressed by means of *terminological axioms* (TBox axioms):

- concept inclusion: $C \sqsubseteq D$
 - necessary conditions for objects of type C.
 - Examples: $Elephant \sqsubseteq Animal \sqcap \neg Mouse$ $Rich \sqcap Famous \sqsubseteq \exists knows.(Rich \sqcap Famous)$
- concept equivalence: $C \equiv D$ (short for $C \sqsubseteq D$ and $D \sqsubseteq C$)
 - necessary and sufficient conditions for objects of type ${\cal C}$
 - Examples:

 $Animal \sqcap Rational \equiv Man \sqcup Woman$

 $Person \equiv \exists hasParent.Person$

The *TBox* \mathcal{T} of a KB is a finite set of terminological axioms.

Exercise: modeling TBoxes

An artist is someone who created an artwork. A sculpture is an artwork. A painting is an artwork that is not a sculpture. A painter is someone who created a painting. A sculptor is someone who created an artwork and created only sculptures. If an artwork is created by an artist, he has either painted or sculptured it. A multi-talent is both a painter and sculptor.

Model the information as a DL TBox:

Solution:

Exercise: modeling TBoxes

An artist is someone who created an artwork. A sculpture is an artwork. A painting is an artwork that is not a sculpture. A painter is someone who created a painting. A sculptor is someone who created an artwork and created only sculptures. If an artwork is created by an artist, he has either painted or sculptured it. A multi-talent is both a painter and sculptor.

Model the information as a DL TBox:

Solution:

- $Artist \equiv \exists created. Artwork$
- $Sculpture \sqsubseteq Artwork$
- $Painting \equiv Artwork \sqcap \neg Sculpture$
 - $Painter \equiv \exists created. Painting$
- $Sculptor \equiv \exists created. Artwork \sqcap \forall created. Sculpture$
- $Artwork \subseteq \exists painted_by.Artist \sqcup \exists sculptured_by.Artist$
- $Multitalent \quad \sqsubseteq \quad Painter \sqcap Sculptor$

ABox: Syntax

Knowledge about individuals in the domain expressed in terms of the vocabulary is specified by means of *assertional axioms* (ABox axioms):

- concept assertion: a: C
 - individual a is an instance of concept C
 - Example: mary: Mother $john: Rich \sqcup \exists hasParent.Rich$
- role assertions: (a, b) : r
 - individual a is related to b through the role r
 - Example:

(john, mary) : likes (new_york, amsterdam) : biggerThan

The $ABox \mathcal{A}$ of a KB is a finite set of assertional axioms.

Exercise: modeling ABoxes

Rembrandt created the artwork: "nightwatch", but never created a sculpture. "nightwatch" is a painting. Michelangelo created at least one sculpture.

Model the information as a DL ABox.

Solution:

Exercise: modeling ABoxes

Rembrandt created the artwork: "nightwatch", but never created a sculpture. "nightwatch" is a painting. Michelangelo created at least one sculpture.

Model the information as a DL ABox.

Solution:

(rembrandt, nightwatch) : created $rembrandt : \neg \exists created.Sculpture$ nightwatch : Painting $michelangelo : \exists created.Sculpture$

Protégé

Protégé is an *ontology editor* for OWL. But since OWL is a syntactic variant of DLs, OWL ontologies can be seen as DL knowledge bases.

DL vs. Protégé interface:

- OWL nomenclature: concept \rightsquigarrow class, role \rightsquigarrow object property.
- Protégé user-friendly syntax:

• Designated fields in a template for entering axioms:

$$\begin{array}{l} C \sqsubseteq D & \rightsquigarrow \text{ Classes } / \ ``C" \ / \ \text{Superclasses } / \ ``D" \\ C \equiv D & \rightsquigarrow \text{ Classes } / \ ``C" \ / \ \text{Equivalent classes } / \ ``D" \\ a : C & \rightsquigarrow \ \text{Individuals } / \ ``a" \ / \ \text{Types } / \ ``C" \\ (a,b) : r & \rightsquigarrow \ \text{Individuals } / \ ``a" \ / \ \text{Object prop. asser. } / \ ``r" \ | \ ``b" \end{array}$$

Exercise: modeling ontology in Protégé:

Enter the following KB into Protégé:

Artist	\equiv	$\exists created. Artwork$
Sculpture		Artwork
Painting	\equiv	$Artwork \sqcap \neg Sculpture$
Painter	\equiv	$\exists created. Painting$
Sculptor	\equiv	$\exists created. \top \sqcap \forall created. Sculpture$
lultitalent		$Painter \sqcap Sculptor$

```
(rembrandt, nightwatch) : created

rembrandt : \neg \exists created.Sculpture

nightwatch : Artwork

michelangelo : \exists created.Sculpture
```

M

TBox: Semantics

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation. \mathcal{I} satisfies a terminological axiom in either of the two cases:

- for $C \sqsubseteq D$ if and only $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- for $C \equiv D$ if and only $C^{\mathcal{I}} = D^{\mathcal{I}}$

An interpretation \mathcal{I} is a *model* of the TBox \mathcal{T} *iff* it satisfies every terminological axiom in \mathcal{T} .

TBox: Semantics example

Let \mathcal{I} be defined as:

- $\Delta^{\mathcal{I}} = \{ rembrandt, michelangelo, rodin, nightwatch, david, sixtChappel, thinker \}$
- $Artwork^{\mathcal{I}} = \{nightwatch, sixtChappel, thinker, david\},$ $Sculptor^{\mathcal{I}} = \{rodin, michelangelo\}$ $Sculpture^{\mathcal{I}} = \{thinker, david\}$ $Painter^{\mathcal{I}} = \{rembrandt, michelangelo\}$ $Painting^{\mathcal{I}} = \{nightwatch, sixtChappel\}$ $sculptured^{\mathcal{I}} = \{(rodin, thinker), (michelangelo, david\}$ $created^{\mathcal{I}} = \{(rembrandt, nightwatch), (michelangelo, sixtChappel),$ $(michelangelo, david), (rodin, thinker)\}$

Is \mathcal{I} a model of \mathcal{T} ?

- $Painting \quad \sqsubseteq \quad Artwork \sqcap \neg Sculpture$
 - $Painter \equiv \exists created. Painting$
- $Sculptor \equiv \exists sculptured. Artwork \sqcap \forall created. Sculpture$

Reasoning tasks for TBoxes

For a TBox \mathcal{T} and concepts C, D occurring in \mathcal{T} .

concept satisfiability:

C is *satisfiable* w.r.t. \mathcal{T} *iff* there is a model \mathcal{I} of \mathcal{T} : $C^{\mathcal{I}} \neq \emptyset$

subsumption: $\mathcal{T} \models C \sqsubseteq D$?

C is subsumed by D in \mathcal{T} iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{T}

equivalence: $\mathcal{T} \models C \equiv D$?

Concepts C and D are *equivalent* in \mathcal{T} iff $C^{\mathcal{I}} = D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{T} .

Reduction of TBox reasoning tasks

All TBox problems in \mathcal{ALC} are reducible to concept satisfiability:

• C is subsumed by D in $\mathcal{T} \Leftrightarrow C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{T}

Proof: C is subsumed by D in \mathcal{T}

- $\Leftrightarrow \quad \text{for every model } \mathcal{I} \text{ of } \mathcal{T} \text{ it holds that } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\Leftrightarrow \quad \text{for every model } \mathcal{I} \text{ of } \mathcal{T} \text{ it holds that } C^{\mathcal{I}} \cap (\neg D)^{\mathcal{I}} = \emptyset$
- $\Leftrightarrow \quad \text{there is no model } \mathcal{I} \text{ of } \mathcal{T} \text{ s.t. } (C \sqcap \neg D)^{\mathcal{I}} \neq \emptyset$
- $\Leftrightarrow \quad C \sqcap \neg D \text{ is unsatisfiable w.r.t. } \mathcal{T}.$
- C and D are equivalent in $\mathcal{T} \Leftrightarrow C$ is subsumed by D in \mathcal{T} and D is subsumed by C in \mathcal{T}

Note: Notice that reduction to concept satisfiability requires: \square and \neg for complex concepts.

ABox: Semantics

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be an interpretation. \mathcal{I} satisfies an assertional axiom in either of the two cases:

- for a: C if and only $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- for (a, b) : r if and only $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$

An interpretation \mathcal{I} is a *model* of the ABox \mathcal{A} *iff* it satisfies every assertional axiom in \mathcal{A} .

An interpretation \mathcal{I} is a *model* of $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ *iff* \mathcal{I} is a *model* of both \mathcal{A} and \mathcal{T} .

Note: By default Unique Name Assumption applies in DLs (but not in OWL!)

ABox: Semantics example

Let \mathcal{I} be defined as:

- $\Delta^{\mathcal{I}} = \{ rembrandt, michelangelo, rodin, nightwatch, david, sixtChappel, thinker \}$
- $Artwork^{\mathcal{I}} = \{nightwatch, sixtChappel, thinker, david\},$ $Sculpture^{\mathcal{I}} = \{thinker, david\}$ $Painting^{\mathcal{I}} = \{nightwatch, sixtChappel\}$ $created^{\mathcal{I}} = \{(rembrandt, nightwatch), (michelangelo, sixtChappel),$ $(michelangelo, david), (rodin, thinker)\}$

Is \mathcal{I} a model of \mathcal{A} ?

```
(rodin, thinker) : created
nightwatch : Artwork
rembrandt : \neg \exists created. Sculpture
```

Reasoning tasks for ABoxes

For a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C, a role r and individuals a, b: *ABox consistency*:

 \mathcal{A} is *consistent* w.r.t \mathcal{T} *iff* there is a model of \mathcal{K} .

Note: in such case we also say that \mathcal{K} is *satisfiable*.

instance checking: $\mathcal{K} \models a : C$? (resp. $\mathcal{K} \models (a, b) : r$) ?

- a is an *instance* of C in \mathcal{K} *iff* every model of \mathcal{K} is a model of a : C
- (a, b) are *in related* r in \mathcal{K} *iff* every model of \mathcal{K} is a model of (a, b) : r

Derived tasks:

- *retrieval:* Given a concept C and an Abox \mathcal{A} find all individuals a such that $\mathcal{K} \models a : C$
- *realization:* Given an individual a and a set of concepts, find the most specific concept C such that $\mathcal{K} \models a : C$.

Reduction of ABox reasoning tasks

All ABox problems in \mathcal{ALC} are reducible to ABox consistency. For KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$:

• a is an instance of C in $\mathcal{K} \Leftrightarrow \mathcal{A} \cup \{a : \neg C\}$ is inconsistent w.r.t. \mathcal{T} .

Proof: *a* is an instance of *C* in \mathcal{K} \Leftrightarrow for every model \mathcal{I} of \mathcal{K} it holds that $a^{\mathcal{I}} \in C^{\mathcal{I}}$ \Leftrightarrow there is no model \mathcal{I} of \mathcal{K} s.t. $a^{\mathcal{I}} \in (\neg C)^{\mathcal{I}}$ \Leftrightarrow there is no model \mathcal{I} of both $\mathcal{A} \cup \{a : \neg C\}$ and \mathcal{T} $\Leftrightarrow \mathcal{A} \cup \{a : \neg C\}$ is inconsistent w.r.t. \mathcal{T} .

- (a,b) are *in relation* $r \Leftrightarrow (a,b) : r \in \mathcal{A}$.
- *retrieval* and *realization* equivalent to a finite number of instance checking and subsumption tasks.

Reduction of reasoning tasks

...and finally:

- C is satisfiable w.r.t. $\mathcal{T} \Leftrightarrow \mathcal{A} = \{a : C\}$ is consistent w.r.t. \mathcal{T} , for a fresh individual name a
 - Proof: C is satisfiable w.r.t. \mathcal{T}
 - $\Leftrightarrow \quad \text{there is a model } \mathcal{I} \text{ of } \mathcal{T} \text{ such that } C^{\mathcal{I}} \neq \emptyset$
 - $\Leftrightarrow \quad \text{there is at least one instance of } C \text{ in } \mathcal{I} \text{name it } a$
 - \Leftrightarrow there is a model of \mathcal{T} which satisfies assertion a: C
 - $\Leftrightarrow \quad \text{there is a model of } \mathcal{T} \text{ which is a model of} \\ \text{the ABox } \mathcal{A} = \{a : C\}$
 - $\Leftrightarrow \quad \mathcal{A} = \{a: C\} \text{ is consistent w.r.t. } \mathcal{T}, \text{ for a fresh name } a.$

Hence:

- All reasoning tasks in \mathcal{ALC} can be reduced to a single task of checking ABox consistency w.r.t. TBox.
- The complexity of ABox consistency checking cannot be lower than that of the other tasks.

Summary

- A DL *knowledge base* $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ consists of the TBox (terminology) \mathcal{T} and the ABox (assertions) \mathcal{A} .
- Axioms of a KB *restrict the possible models*.
- The reasoning tasks in *ALC* for TBoxes and ABoxes can be reduced to checking *ABox consistency w.r.t. TBox*.

Next:

• Tableau algorithm for reasoning in \mathcal{ALC} .