
Automated Reasoning in Artificial Intelligence:

Introduction to Description Logic

Szymon Klarman
(part of the content based on the tutorial by Stefan Schlobach)

szymon.klarman@gmail.com

VU University Amsterdam, 2009-2012

AR@AI Introduction to Description Logic

Assignment

Tasks:

1 implement tableau algorithm for the DL ALC in LoTREC,

2 solve specified reasoning problems using your implementation,

3 elaborate on certain implementation issues,

4 propose an extension of the algorithm to cover certain constructs
beyond ALC.

To be delivered:

1 final presentation,

2 implementation + report.

Szymon Klarman 1 / 12

AR@AI Introduction to Description Logic

LoTREC

LoTREC is a Generic Tableau Prover — a platform for prototyping
tableau algorithms for a variety of modal logics.

http://www.irit.fr/Lotrec/

Good thing: a very handy and universal toolkit. Gives a quick and
clean way of declaring:

• the syntax of your logic,

• the rules of your tableau algorithm,

• complex strategies of using those rules,

• sample formulas on which you can test the algorithms.

However: it has been developed in the academia:

• quite a few bugs and implementation problems,

• not always stable (save your work often!),

• not much documentation and user support.

Szymon Klarman 2 / 12

AR@AI Introduction to Description Logic

Basic notions

LoTREC manipulates over graph structures called pre-models. A
pre-model corresponds to a branch of a tableau.

From the DL perspective the nodes of a graph represent individuals,
links between the nodes are roles, and elements of the nodes are
concepts.

Szymon Klarman 3 / 12

AR@AI Introduction to Description Logic

Implementing a tableau algorithm in LoTREC

We will implement a tableau algorithm for a fragment of modal logic K
consisting of:

• atomic propositions: p, q, r,

• atomic negation: ¬p,

• disjunction: p ∨ q,

• possibility operator: 3p.

The tableau rules for this fragment are:

⇒∨ IF (x : p ∨ q) ∈ S THEN S′ := S ∪ {x : p} or S′ := S ∪ {x : q}
⇒3 IF (x : 3p) ∈ S THEN S′ := S ∪ {(x, y) : R, y : p}

where y is a ‘fresh’ variable in S

⇒× IF {x : p, x : ¬p} ⊆ S THEN mark the branch as CLOSED

We check whether a set of formulas is satisfiable.
Szymon Klarman 4 / 12

AR@AI Introduction to Description Logic

Connectors

In the connectors tab you define the syntax of your logic:

• Name: name of the connector as used in the input formulas,

• Arity: the number of arguments taken by the connector,

• Display: the way the connector is displayed in the tableau,

• Priority, Associative: standard notions, but not relevant here.

Example:

Name: or | Arity: 2 | Display ∨

The symbol is used to mark the positions of the arguments w.r.t. the
connector. Note that while defining the input formulas you can only
use the prefix notation. Therefore:

input: or P Q | display: P ∨ Q

Szymon Klarman 5 / 12

AR@AI Introduction to Description Logic

Rules

In the rules tab you specify the condition-action rules to be used in
your algorithm.

Variables:

• node variables: x, y, node, node’...

• expression variables (formulas, relations): x, y, and x y...

• expression constants: CLASH, MARK...

Conditions:

• hasElement: a node x has element y

• hasNotElement: a node x does not have element y

• isLinked: a node x1 is related to a node x2 via relation y

• isAncestor: a node x1 is an ancestor of node x2 (opposite to being
a successor)

Szymon Klarman 6 / 12

AR@AI Introduction to Description Logic

Rules

Conditions cont.:

• isNewNode: a node x1 is a node in the graph
does not have a specific meaning but sometimes is necessary for
creating complex patterns, e.g.:
isAncestor node1 node2

isNewNode node2

• isAtomic: the expression x is atomic (is not a complex
expression),

• areNotIdentical: node x1 is not the same node as x2,

• contains: node x1 contains all elements of node x2.

Szymon Klarman 7 / 12

AR@AI Introduction to Description Logic

Rules

Actions:

• add: add expression x to node y,

• createNewNode: create new node x,

• link: link node x1 to node x2 with relation y,

• stop: stops the pre-model containing node x from developing
further,

• duplicate: duplicates the current pre-model, e.g.

condition: hasElement node (or x y)

action: duplicate copy

add node x

add copy.node y

Szymon Klarman 8 / 12

AR@AI Introduction to Description Logic

Strategies

In the strategies tab you write the pseudo-code of your algorithm based
on the use of in-built routines, defined rules and other strategies.

• no routine:

rule1

rule2

Meaning: take the pre-model, apply rule1 as long as applicable,
apply rule2 as long as applicable, return the resulting pre-model.

• repeat – end:

repeat

rule1

rule2

end

Meaning: As above, but after each run update the pre-model and
repeat until saturation.

Szymon Klarman 9 / 12

AR@AI Introduction to Description Logic

Strategies

• firstRule – end:

firstRule

rule1

rule2

end

Meaning: take the pre-model, apply the first rule as long as
applicable, return the resulting pre-model.

• allRules – end:

firstRule

rule1

allRules

rule2

rule3

end

end

Meaning: a block with no routine inside the firstRule block.

Szymon Klarman 10 / 12

AR@AI Introduction to Description Logic

Strategies

• applyOnce:

applyOnce rule

Meaning: apply the rule only once and then move on.

Szymon Klarman 11 / 12

AR@AI Introduction to Description Logic

GOOD LUCK!

Szymon Klarman 12 / 12

