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Abstract. Temporal query abduction is the problem of hypothesizing a
minimal set of temporal data which, given some fixed background knowl-
edge, warrants the entailment of the query. This problem formally un-
derlies a variety of forms of explanatory and diagnostic reasoning in the
context of time series data, data streams, or otherwise temporally an-
notated structured information. In this paper, we consider (temporally
ordered) data represented in Description Logics from the popular DL-
Lite family and Temporal Query Language, based on the combination
of LTL with conjunctive queries. In this defined setting, we study the
complexity of temporal query abduction, assuming different restrictions
on the problem and minimality criteria for abductive solutions. As a re-
sult, we draw several revealing demarcation lines between NP-, DP- and
PSpace-complete variants of the problem.

1 Introduction

The ubiquity and importance of time-related information in semantic applica-
tions necessitates the need for novel representation and reasoning solutions for
dealing with the temporal dimension of data. In particular, the task of query-
ing temporal data in the presence of ontological constraints has in recent years
gained considerable attention within the Semantic Web and Description Logic
communities [1,2,3,4,5]. Query languages supporting complex temporal patterns
are essential for enabling fine-grained retrieval and analysis of temporally an-
notated information, both in the static settings, such as involving historical or
time series data, as well as in the dynamic ones, witnessed in the context of
streaming data applications. One interesting derived problem which we study
in this paper is temporal query abduction, i.e., the problem of hypothesizing a
minimal set of temporal data which, given some fixed background knowledge,
warrants the entailment of the query. This type of inference is inherent to a va-
riety of explanatory and diagnostic forms of reasoning applicable in the context
of temporal data. For instance, suppose that the fact that the grass is frozen in
some location x follows whenever the following query is satisfied:

[rainIn(x)] X [∃y.(tempIn(y, x) ∧ below 0 (y))]
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meaning that the below-zero temperature occurred in location x immediately
after a rainfall. Using abductive inference, one is then able to explain this fact
with a hypothesisAi+1 = {(tempIn(t, x), below 0 (t)}, provided he already knows
that Ai = {rainIn(x)}, where Ai and Ai+1 represent the data sets that hold in
some relative time points i and i+ 1.

Following the popular paradigm of ontology-based data access, we consider
data expressed as Description Logic (DL) axioms, accessed through an ontolog-
ical layer expressed in logics from the popular DL-Lite family [6]. Further, we
use Temporal Query Language (TQL), originally introduced in [5], for querying
temporally ordered DL data. TQL, based on the combination of Linear Tempo-
ral Logic with conjunctive queries, offers a flexible means for interleaving data
patterns with temporal constraints, thus providing a powerful framework for
expressing interesting correlations in temporal data sets. Based on this founda-
tion, we define the problem of temporal query abduction, which is the central
conceptual contribution of this work. On the technical side, we analyse the com-
putational complexity of the problem, considering different fragments of the
temporal language and different restrictions on the space of abductive solutions.
As a result, we draw several revealing demarcation lines between NP-, DP- and
PSpace-complete variants of the problem.

A number of other types of abductive inference for DLs have been studied in
the literature. These include: concept abduction [7,8], TBox and ABox abduction
[9,10,11,12] and query/rule abduction [13,14,15]. This last form of reasoning,
dealing with the identification of minimal ABoxes satisfying a certain query/rule,
is most closely related to the problem studied in this paper, although it does not
consider the temporal dimension of DL data. To the best of our knowledge, the
problem of temporal query abduction has never been formulated within the DL
framework before, even though it has been properly recognized and investigated
on the grounds of other formalisms [16,17].

The paper is organized as follows. In the next section we recap preliminaries
of DLs and Temporal Query Language. In Section 3 we introduce the problem of
temporal query abduction. Then, in Section 4 we present the complexity results
and discuss their consequences on the main problem. The paper is concluded in
Section 5. The proofs of the results are included in the appendix.

The results reported in this paper are minor generalizations of those originally
presented by the authors in [18].

2 Preliminary notions

In this section, we introduce the basic nomenclature regarding Description Log-
ics, conjunctive queries, and the representation and querying of temporal data.

2.1 DL-Lite and conjunctive queries

A Description Logic (DL) language is given by a vocabulary Σ = (NI,NC,NR)
and a set of logical constructors [19]. The vocabulary consists of countably infi-
nite sets of individual names (NI), concept names (NC) and role names (NR). An
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ABox A is a finite set of assertions A(a) and r(a, b), for a, b ∈ NI, A ∈ NC and
r ∈ NR. A TBox T is a finite set of terminological axioms, e.g., concept and role
inclusions, whose precise syntax is determined by the given DL. The semantics
is given in terms of DL interpretations I = (∆I , ·I), defined as usual [19]. An
interpretation I is a model of T and A, denoted as I |= T ,A, iff it satisfies
every axiom in T and A. If T and A have a common model they are said to be
consistent.

Abiding by the nomenclature of ontology-based data access paradigm, we
consider the ABox as data and the TBox as the ontology, which provides an
additional semantic layer over the data, thus enriching the querying capabili-
ties. A conjunctive query (CQ) over a DL vocabulary Σ is a first-order formula
∃y.ϕ(x,y), where x,y are sequences of variables, from a countably infinite set
of variables NV. The sequence x denotes the free (answer) variables in the query,
while y the quantified ones. The formula ϕ is a conjunction of atoms over NC,NR

of the form A(u), r(u, v), where u, v ∈ NV ∪ NI are called terms. By term(q) we
denote the set of all terms occurring in a CQ q and by avar(q) the set of all
its answer variables. We call q boolean whenever avar(q) = ∅. A boolean CQ q
is satisfied in I iff there exists a mapping µ : term(q) 7→ ∆I , with µ(a) = aI

for every a ∈ NI, such that for every A(u) and r(u, v) in q it is the case that
µ(u) ∈ AI and (µ(u), µ(v)) ∈ rI . We say that q is entailed by a TBox T and an
ABox A, denoted as T ,A |= q iff q is satisfied in every model of T and A. An
answer to q is a mapping σ such that σ : avar(q) 7→ NI. By σ(q) we denote the
result of uniformly substituting every occurrence of x in q with σ(x), for every
x ∈ avar(q). An answer σ is called certain over T ,A iff T ,A |= σ(q). The set of
all certain answers to q over T ,A is denoted by cert(q, T ,A). By QΣ we denote
the class of all conjunctive queries over the vocabulary Σ.

In this paper, we focus on logics from the DL-Lite family [6], such as DL-
LiteR, DL-LiteF or DL-LiteA, underlying the OWL 2 QL ontology language
profile1, for which CQs enjoy the so-called first-order rewritability property, de-
fined as follows.

Definition 1 (FO rewritability [6]). For every CQ q ∈ QΣ and a TBox T ,
there exists a FO formula qT such that for every ABox A and answer σ to q, it
holds that σ ∈ cert(q, T ,A) iff db(A) 
 σ(qT ), where db(A) denotes A considered
as a database/FO interpretation and 
 is the FO satisfaction relation.

Recall, that given T in any of such DLs and a boolean q, the FO rewriting
qT of q is a union of possibly exponentially many CQs, including q. The number
of these CQs is bounded by `(T )`(q), where `(†) denotes the size of the input
† measured in the total number of symbols used. Every CQ q′ in qT is such
that T ∪ {q′} |= q and its size is linear in `(q). The query entailment problem is
NP-complete in the combined complexity, even when the TBox is empty, while
checking consistency of T ,A is in PTime [6].

1 See http://www.w3.org/TR/owl2-profiles/.
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Regardless of this default focus, many of the results presented here can be
naturally extended to other DLs with similar characteristics, such as other mem-
bers of the DL-Lite family or logics in the EL family [20].

2.2 Temporal Query Language

We consider a discrete, linear time domain (Z, <), with integers representing
time points ordered by the smaller-than relation. An interval over Z is a set
I = [I−, I+] = {i ∈ Z | I− ≤ i ≤ I+}, where I− ≤ I+ ∈ Z ∪ {−∞,+∞} and
−∞ < i < +∞ for every i ∈ Z.

Definition 2 (A-sequence). An A-sequence A = (Ai)i∈I is a sequence of
ABoxes, for some interval I over Z.

A-sequences represent collections of datasets ordered w.r.t. the underlying
time domain. The ordering of the ABoxes follows the smaller-than ordering of
their indices. An A-sequence A is said to be consistent with a TBox T if every
ABox in it is consistent with T . Consider A-sequences A = (Ai)i∈I and B =
(Bi)i∈J . We use the following notation:

– T ,A |= B (A |= B) iff J ⊆ I and T ,Ai |= Bi (Ai |= Bi) for every i ∈ J ,
– A ]B, whenever I ∩ J 6= ∅, to denote the A-sequence (Ci)i∈I∪J such that:

• Ci = Ai, for every i ∈ I \ J ,
• Ci = Bi, for every i ∈ J \ I,
• Ci = Ai ∪ Bi, for every i ∈ I ∩ J ,

– A ⇀n B, for some n ∈ I ∩ J , iff there exists a mapping f : I 7→ J , such
that:

• f(n) = n,
• i < j iff f(i) < f(j), for every i, j ∈ I,
• Ai = Bf(i), for every i ∈ I,

Next, we recall a variant of Temporal Query Language, proposed in [5], which
we use for accessing A-sequences. It is a lightweight combination of Linear Tem-
poral Logic (LTL) [21] with CQs, where CQs are embedded in the temporal
language using the epistemic semantics.

Definition 3 (Temporal Query Language). The temporal query language
(TQL) over a class of conjunctive queries QΣ is the smallest set of formulas
induced by the grammar:

φ, ψ ::= [q] | ¬φ | φ ∧ ψ | φUψ | φSψ

where q ∈ QΣ. By avar(φ) we denote the set of free variables in φ. A TQL
formula φ is called boolean whenever avar(φ) = ∅. The entailment relation for
boolean TQL formulas w.r.t. an A-sequence A = (Ai)i∈I under a TBox T in
time i ∈ I is defined inductively as follows:
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T ,A, i |= [q] iff T ,Ai |= q,
T ,A, i |= ¬φ iff T ,A, i 6|= φ,
T ,A, i |= φ ∧ ψ iff T ,A, i |= φ and T ,A, i |= ψ,
T ,A, i |= φUψ iff there exists j ∈ I with j > i such that

T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i < k < j,

T ,A, i |= φSψ iff there exists j ∈ I with j < i such that
T ,A, j |= ψ and T ,A, k |= φ for every k ∈ I
with i > k > j.

An answer to a TQL formula φ is a mapping σ : avar(φ) 7→ NI. By σ(φ)
we denote the result of uniformly substituting every occurrence of x in φ with
σ(x), for every x ∈ avar(φ). An answer σ is called certain over T ,A at i ∈ I iff
T ,A, i |= σ(φ). The set of all such answers is denoted by certi(φ, T ,A).

As usual, using the operators U (strict until) and S (strict since), we can
easily define other ones, such us Fφ = >Uφ (some time in future), Pφ = >Sφ
(some time in past), Xφ = ⊥Uφ (next in future), X−φ = ⊥Sφ (next in past).
In fact, LTL with U and S, which captures precisely the temporal component
of TQL, is known to be expressively complete over (Z, <) [22]. Apart from the
full TQL, in what follows we consider also some of its strict subsets. By TQLF,P

we denote the fragment where U and S appear only in the forms allowed in the
definitions of F and P. Further, with TQL+ we refer to the positive fragment of
TQL, i.e., TQL without the negation operator. Finally, by TQLF,P,+, we denote
the intersection of TQLF,P and TQL+.

Observe that given the epistemic interpretation of the embedded CQs, [q]
reads as “q is entailed in the given time instant”, for a boolean CQ q. We can
immediately paraphrase this interpretation by invoking the FO rewriting of q, in
the sense of Definition 1. Note that the following correspondences immediately
hold:

T ,A, i |= [q] iff T ,Ai |= q iff db(Ai) 
 qT .

Consequently, the negation ¬[q] is naturally interpreted as negation-as-failure,
reading “it is not true that q is entailed in the given time instant”. This warrants
the following equivalences:

T ,A, i |= ¬[q] iff T ,Ai 6|= q iff db(Ai) 6
 qT .

These observations are critical for the work presented in this paper, as they allow
to study satisfaction of TQL formulas by decoupling the temporal component
of the problem from the CQ component, and addressing the latter, without loss
of correctness, by applying the standard FO rewriting techniques and results,
recalled in Section 2.1. Importantly, such lightweight combination of languages
allows also for a modular reuse of existing temporal reasoners and highly opti-
mized, efficient query answering engines [5]. In TQL+ the epistemic interpreta-
tion of CQs becomes redundant, and the resulting language coincides with the
one proposed in [2].

5



3 Temporal query abduction

Temporal queries can be naturally used for formalizing temporal data patterns
and correlations between them, which are known to occur in a given domain.
For instance, consider the TQL formulas φ and ψ:

φ =
¬[∃y.(tempIn(y, x)∧ above 0 (y))] S ([∃y.(tempIn(y, x)∧ below 0 (y))]∧X−[rainIn(x)])

ψ = ∃y.(Grass(y) ∧ locIn(y, x) ∧ Frozen(y))

The first one describes a location x, which experienced a rainfall in the past,
followed directly by a below-zero temperature, after which no above-zero tem-
perature has been recorded. The second one states that grass is frozen in a certain
location x. Suppose there actually exists a causal dependency reflected via the
rule φ → ψ, so that for any answer σ = {x 7→ l}, whenever T ,A, n |= σ(φ)
then T ,A, n |= σ(ψ). In common diagnostic scenarios, such rules can be further
employed to guide the explanation-finding for the observed data: whenever σ(ψ)
is true one might hypothesize a suitable collection of temporal data which makes
σ(φ) true. This latter form of hypothetical inference, from a temporal query to
temporal data, is a variant of classical abductive reasoning, which we study here
and formalize it using the nomenclature coined in [9,11,14].

Definition 4 (Temporal query abduction). A temporal query abduction
(TQA) problem is a tuple Ω = (T ,A, φ, n), where T is a TBox, A = (Ai)i∈I
is an A-sequence, for some finite I, φ is a boolean TQL formula, and n ∈ I. A
solution to Ω is an A-sequence D = (Di)i∈Z, such that A ]D is consistent with
T , and T ,A ]D, n |= φ. The solution D is called:

– �e-minimal iff for every solution D′, if D |= D′ then D′ |= D,
– �b-minimal iff for every solution D′, if T ,A]D |= D′ then T ,A]D′ |= D,
– �s-minimal iff for every solution D′, if D′ ⇀n D then D = D′.

In the remainder of this paper, we assume w.l.o.g. that for every TQA prob-
lem (T ,A, φ, n), n = 0, and write (T ,A, φ) for short. Intuitively, the pair (T ,A)
represents the background knowledge for the abductive inference over the TQL
formula φ. The finiteness of A is one of the necessary conditions to ensure that
the space of abductive solutions can be made finite.

As usually in the context of abductive reasoning, we employ several min-
imality criteria which help to reduce the solution space to a computationally
manageable level. The first two are generalizations of criteria known in the clas-
sical, atemporal abduction. Intuitively, �e-minimality (for entailment) places
the precedence over solutions which are logically weakest — they assume the
least possible data in every given state — irrespectively of the background knowl-
edge. The �b-minimality (for entailment w.r.t. background knowledge) takes also
into account the assumed TBox and A-sequence. Observe that �b-minimality is
strictly stronger than �e-minimality, i.e., whenever a solution D is �b-minimal
it must be �e-minimal, while the converse does not hold in general. Note that
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. . . −4 −3 −2 −1 0

A: HeavyRainIn(l) tempIn(t, l)

D1: below 0 (t)

D2: RainIn(l) below 0 (t)

D3: HeavyRainIn(l) tempIn(t, l)
below 0 (t)

D4: RainIn(l) tempIn(t, l)
below 0 (t)

Table 1. The A-sequence A and the solutions D1-D4 to (T ,A, φ), for T =
{HeavyRainIn v RainIn}.

whenever a problem has a solution at all, it must have a �b-minimal (and thus
an �e-minimal) solution. The �s-minimality criterion (for structure) is a novel
one, tailored specifically for abduction problems whose solutions are sequential
structures. It ensures that the solution D has no redundant subsequences. To
rephrase it, D is not minimal in the sense of �s whenever one can obtain a dis-
tinct solution by simply removing some ABoxes from D — somewhere to the left
or to the right from the fixed point n. In general, the abductive procedures devel-
oped in the next section are complete w.r.t. �s- and �e-minimal solutions, while
�b-minimality can be optionally used in certain cases to ease the computation.

For a more intuitive illustration of the setup and the employed minimality
criteria, we consider a TQA problem Ω = (T ,A, φ), with T = {HeavyRainIn v
RainIn}, A as included in Table 1 and φ as defined in the beginning of this
section. Table 1 presents several solutions to Ω at time 0. Note, that all empty
and hidden cells in the table are empty ABoxes. Solutions D1 and D3 are both
�s- and �e-minimal. D3 is not �b-minimal, as replacing HeavyRainIn(l) with
its consequence RainIn(l) results in a logically weaker solution w.r.t. T . Further,
solution D2 is not �e-minimal, as the assertion RainIn(l) is not in fact necessary
for the query to be entailed. Finally, solution D4 is not �s-minimal. Observe that
by dropping ABoxes D−2 and D−1, and “shifting” D−4 and D−3 to the right by
two time points, we obtain a non-equivalent �s-minimal solution.

4 Complexity analysis

In this section, we study the combined complexity of different variants of the
temporal query abduction problem. The proofs are included in the appendix.
Note that “recognition” results, w.r.t., a minimality criterion, signals that the
underlying decision procedure is complete but not necessarily sound, i.e. we
ensure that all minimal solutions are found by the procedure, but it might be
still necessary to filter out some non-minimal ones which are also included in the
outcome. A “computation” result implies soundness as well [14].
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We start by addressing ABox abduction, i.e., the problem of abducing a
minimal ABox ensuring entailment and non-entailment of selected CQs at a
single time point.

Definition 5 (ABox abduction). An ABox abduction problem is a tuple Ω =
(T ,A, P,N), where T is a TBox, A an ABox, and P,N ⊆ QΣ are sets of boolean
CQs. An ABox D is called a solution to problem Ω iff A ∪ D is consistent with
T and:

1. T ,A ∪D |= [q], for every q ∈ P ,
2. T ,A ∪D |= ¬[q], for every q ∈ N .

Note, that �e- and �b-minimality criteria transfer immediately from Defini-
tion 4, on considering a single ABox as an A-sequence with exactly one element.
The �s-minimality does not apply in the context of ABox abduction. The results
obtained here rest on and extend some of those presented in [14].

Lemma 1 (Solving ABox abduction problems). Let Ω be an ABox abduc-
tion problem and D an �e-minimal solution to Ω. Then:

1. computing D for Ω = (T , ∅, P, ∅) is in PTime, if T = ∅ or D is �b-minimal,
2. recognizing D for Ω = (T ,A, P, ∅) is NP-complete, if T 6= ∅ or A 6= ∅,
3. computing D for Ω = (T ,A, P,N) is DP-complete, if P 6= ∅ and N 6= ∅,

even when A = ∅ and irrespective of deciding �b-minimality,

where D is fixed up to renaming individuals in the included ABox assertions.

The PTime result in the first case follows by observing that the addressed
ABox abduction problems can be solved immediately by grounding the conjuncts
of the CQs. Solving the second type of problems might involve NP-complete CQ
entailment checks and/or a nondeterministic choice from an exponential number
of queries in the FO rewriting of a CQ. For the last case, recall that DP denotes
the intersection of the classes of NP and coNP problems. The result is due to the
simultaneous presence of positive and negative CQs, which requires entailment
and non-entailment checks, with the latter in coNP.

Next, we focus on proper TQA problems in TQL. The central challenge to
be addressed is that solutions to such problems are in principle of infinite length,
which makes their computation generally impossible in finite time. However, we
are able to identify certain finite structures which can be unambiguously unfolded
into the corresponding A-sequences. Thus, rather than searching for A-sequences
directly, we focus on finding their finite representations, called A-structures.

Definition 6 (A-structures). An A-structure is a tuple S = (S,S0,→), where
S = S+ ∪ S− is a finite set of ABoxes, S0 ∈ S+ ∩ S− is the initial ABox, and
→ is a successor function, such that →: S+ 7→ S+ and →: S− 7→ S−. The
unfolding of S is an A-sequence . . . ,Sj−1,Sj , . . . ,S0, . . . ,Si,Si+1, . . ., where for
every i ≥ 0, Si → Si+1, for some Si+1 ∈ S+, and for every j ≤ 0, Sj → Sj−1,
for some Sj−1 ∈ S−.
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The key to the abductive algorithms we develop here is ensuring existence
of an upper bound on the size of the A-structures that are to be found. Tech-
nically, the proofs rest on the construction of so-called quasimodels, which link
A-structures with the input abductive problems. Intuitively, a quasimodel s =
(si)i∈Z is an abstraction of an infinite model satisfying the query. Each si-th
element (ti,B(ti)) in that sequence consists of the set ti of subformulas of φ that
must be satisfied in i and the minimal ABox B(ti) satisfying all positive and
negative occurrences of CQs at i, i.e., [q],¬[q] ∈ ti. Particularly instrumental are
special quasimodels called ultimately periodic, comprised by two infinite subse-
quences (one future, one past), where each subsequence consists of a finite initial
sequence called the head, followed by an infinite repetition of some terminal sub-
sequence of the head, called the period. We show that every �e- and �s-minimal
solution to a TQA problem corresponds to an ultimately periodic quasimodel,
which can be further associated with an A-structure of a particular size, linear
in the length of the heads of the two sequences comprising the quasimodel.

For TQA over TQL formulas the relevant A-structures consist of at most
exponentially many states in the size of the given abduction problem. This res-
onates closely with the “small model” property of LTL, which rests on similarly
defined bounds [21]. Recall that by `(†) we denote the total size of the input †.

Lemma 2 (A-sequence vs. A-structure). Let D be an �e- and �s-minimal
solution to a TQA problem Ω = (T ,A, φ), where A = (Ai)i∈I and φ is a TQL
formula. Then there exists an A-structure S whose unfolding is D, such that
|S| = f(`(Ω)), for some function f(x) ∈ O(2x).

The basic algorithm which recognizes �e- and �s-minimal solutions to TQA
problems is an adaptation of Sistla and Clarke’s decision procedure for LTL [21].
In principle, the underlying computation model has to be changed from finite-
state automata to finite-state transducers, i.e., Turing machines using additional
write-only output tapes, as a recognized solution needs to be effectively pre-
sented. This revision, however, does not affect the complexity of the algorithm,
which remains PSpace-complete, irrespectively of the possibly exponential size
of solutions.

Theorem 1 (Recognizing TQA solutions). Recognizing an �e- and �s-
minimal solution to a TQA problem (T ,A, φ), where φ is a TQL formula, is
PSpace-complete.

As the hardness result transfers from the satisfiability problem in the under-
lying LTL, it is easy to see that the result holds even for pure-future (only U
operator) or pure-past TQL formulas. In case of TQLF,P and TQL+ we are able
to show that the upper bound on the size of the relevant A-structures is smaller
— in fact, linear in the size of the input.

Lemma 3 (A-sequence vs. A-structure for TQLF,P,TQL+). Let D be an
�e- and �s-minimal solution to a TQA problem (T ,A, φ), where A = (Ai)i∈I
and φ is a TQLF,P or TQL+ formula. Then there exists an A-structure S whose
unfolding is D, such that |S| ≤ f(`(φ)), for some f(x) ∈ O(x).
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Given the linear size of the solutions, the worst case complexity of recogniz-
ing TQA solutions for TQLF,P drops to DP. In this case, it is sufficient to guess a
linearly long head of a candidate quasimodel and verify it satisfies all the neces-
sary structural conditions. As states in the quasimodel can contain positive and
negative occurrences of CQs, the abduction of the respective minimal ABoxes is
DP-complete.

Theorem 2 (Recognizing TQA solutions for TQLF,P). Recognizing an �e-
and �s-minimal solution to a TQA problem (T ,A, φ), where φ is a TQLF,P

formula, is DP-complete.

In case of TQL+, the complexity of abductive reasoning is even smaller,
in fact NP-complete, as no negative CQs have to be considered. Reducing the
TQL language further down to TQLF,P,+ does not yield any additional gain,
even when �b-minimality is considered and the A-sequence A is empty. This is
a consequence of the non-determinism involved in choosing the order in which
U-/S-formulas are fulfilled in the consecutive states. In the worst case, all permu-
tations must be considered, which enables reduction from the NP-hard Hamil-
tonian path problem.

Theorem 3 (Recognizing TQA solutions for TQL+,TQLF,P,+). Recogniz-
ing a �e- and �s-minimal solution to a TQA problem (T ,A, φ), where φ is
a TQL+ or TQLF,P,+ formula, is NP-complete. The result holds even for �b-
minimal solutions and when A = ∅.

Note that in most cases computing TQA solutions, as opposed to recognizing
them, is bound to be of a higher complexity due to the necessity of conducting
pairwise comparisons between exponentially many alternatives.

The findings reported above, neatly reflect the modular character of TQL,
which allows for handling the embedded CQs largely independently from rea-
soning about the temporal dimension of the queries. In case of TQL entail-
ment, this feature suggests a universal way of defining the upper complexity
bound in different fragments of the language [5]. The bound is implied by the
generic algorithm consisting of any (standard) decision procedure for the tem-
poral language, augmented with an oracle deciding entailment/non-entailment
of the CQs. Whenever the underlying LTL is in PSpace, then TQL entailment
must be in PSpaceDP = PSpace. In TQLF,P the same argument leads to a
procedure in NPDP=DP. Finally in TQLF,P,+, where CQs occur only in positive
form, we obtain NPNP=NP bound. These results clearly mirror the identified
bounds for TQA problems in the corresponding fragments.

The analysis conducted in this section shows that TQA problems are compu-
tationally hard in general, but can be made easier by progressively simplifying
the assumed setting. Notably, by restricting the expressiveness of temporal op-
erators and eliminating negation from the underlying TQL, the complexity of
reasoning can be reduced from PSpace- to NP-complete. The remaining non-
determinism, warranting NP-hardness, can be mostly attributed to the size of FO
rewritings of CQs and the number of alternative orders in which U/S-subformulas
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are to be fulfilled over time. Can these too be tamed granting an even lower com-
plexity? Most likely, yes. We suspect that by considering �b-minimal solutions
and allowing only formulas whose structure unambiguously determines the or-
der of fulfilment of U/S-subformulas, the combined complexity of prediction and
explanation should drop further to PTime.

5 Conclusions

In this paper, we have defined a novel problem of temporal query abduction in the
context of data represented in DL-Lite. A number of complexity results, which
we have delivered for different restricted fragments of the studied setting, imply
concrete ways of constraining the problem in order to render abductive reasoning
more feasible in practice. As processing temporal semantic data becomes an
increasingly important task in many applications, understanding and being able
to operationalize such constraints is crucial for efficient implementations.

More generally, we believe that the use of TQL-like queries for representing
and reasoning about temporal data patterns and their correlations defines a
highly promising approach to bridging the gap between the semantic perspective
on temporal data and the statistical view, endorsed in the data mining field. As
initiated in [18], we intend to further the study of forms of reasoning which
could naturally benefit from existence of such a link, such as prediction and
explanation over time series and streaming semantic data.
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interpretation as abduction. In: Proc. of the International Workshop on Description
Logics (DL-07). (2007)

14. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: The complexity of explaining
negative query answers in DL-Lite. In: Proc. of the International Conference on
the Principles of Knowledge Representation and Reasoning (KR-12). (2012)

15. Pan, J.Z., Du, J., Qi, G., Shen, Y.D.: Towards practical ABox abduction in large
description logic ontologies. International Journal on Semantic Web and Informa-
tion Systems 8(2) (2012) 1–33

16. Ribeiro, C., Porto, A.: Abduction in temporal reasoning. In: Proc. of the Interna-
tional Conference on Temporal Logic (ICTL-94). (1994)

17. Brusoni, V., Console, L., Terenziani, P., Dupr, D.: An efficient algorithm for tem-
poral abduction. In: Proc. of Advances in Artificial Intelligence (AI*IA-97). (1997)

18. Klarman, S., Meyer, T.: Prediction and explanation over DL-Lite data streams.
In: Proc. of the International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR-19). (2013)

19. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press (2003)

20. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Proc. of the International Joint
Conference on Artifical Intelligence (IJCAI-09). (2009)

21. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of ACM 32(3) (1985) 733–749

22. Gabbay, D.: The declarative past and imperative future: Executable temporal
logic for interactive systems. In: Proc. of the Conference on Temporal Logic in
Specification (TLS-87). (1987)

12



Appendix

Below we present full proofs of the results included in Section 4.

A.1 ABox abduction

Lemma 1 (Solving ABox abduction problems). Let Ω be an ABox abduc-
tion problem and D an �e-minimal solution to Ω. Then:

1. computing D for Ω = (T , ∅, P, ∅) is in PTime, if T = ∅ or D is �b-minimal,
2. recognizing D for Ω = (T ,A, P, ∅) is NP-complete, if T 6= ∅ or A 6= ∅,
3. computing D for Ω = (T ,A, P,N) is DP-complete, if P 6= ∅ and N 6= ∅,

even when A = ∅ and irrespective of deciding �b-minimality,

where D is fixed up to renaming individuals in the included ABoxes.

Proof. (1) To compute a solution, up to renaming individual names, it suffices
to ground the conjuncts of every q ∈ P , replacing the existentially bounded
variables with fresh constants. If the resulting ABox D is consistent with T
— a condition verifiable in time polynomial in the size of T , P — then D is
the unique �b-minimal solution and the unique �e-minimal solution whenever
T = ∅. For the former conclusion, observe that grounding any other CQ than
q in qT for any q ∈ P must result in a non-�b-minimal solution, while for the
latter, that qT = q for every q ∈ P , and so grounding q is the only way to
ensure entailment db(D) 
 q. Note also, that grounding distinct variables with
the same constant is always redundant, given the restriction of identifying D
up to renaming of constants. E.g., for q = ∃x, y.(C(x) ∧ D(y)), the grounding
{C(a), D(a)} is redundant as it can be obtained from {C(a), D(b)} by renaming
b 7→ a, but not vice versa.

(2) The upper bound transfers from the case of T 6= ∅ and A 6= ∅, proved
in [14] as one type of the recognition problems for negative query explanations.
Note that the number of distinct �e-minimal solutions must be bounded by
`(T )`(P )·`(A)`(P ), where the first factor is the number of CQs in the FO rewriting
of a CQ, and the second one is the number of possible groundings of a CQ, and so
it is at most exponential in the size of the input. The hardness for T 6= ∅ can be
shown by reduction from the 3-SAT problem. Let f = c1 ∧ . . .∧ cn be a formula
in CNF, where each ci = Li1 ∨ Li2 ∨ Li3 and every Lik is a literal. We fix CQ
q = ∃x.(C1(x)∧. . .∧Cn(x)), where Ci is a fresh concept name associated with the
clause ci, and define TBox encoding the clauses {Li1 v Ci, Li2 v Ci, Li3 v Ci}
and the disjontness axioms for the complementary literals Lp v ¬Lp where Lp
is a concept name associated with atom p and Lp with ¬p. Then the formula
f is satisfiable iff there exists a solution to the problem (T , ∅, {q}, ∅) in which
only concepts Lp, Lp occur. Note, that the latter condition can be verified in time
linear inD, and so it does not add to the complexity of the problem. The hardness
for A 6= ∅ can be shown by reduction from the graph homomorphism problem.
Given graphs G = (V,E), G′ = (V ′, E′) we want to decide whether there exists
a function h : V 7→ V ′ such that (v, u) ∈ E implies (h(v), h(u)) ∈ E′. We encode
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graph G′ as the ABox A, using a single role edge and unique individual names
representing vertices, and G as the query using the same role and existentially
bounded variables for the vertices. Then a requested homomorphism exists iff
D = ∅ is recognized as a �e-minimal solution.

(3) Observe that whenever D is an �e-minimal solution to (T ,A, P,N) for
N = ∅, then for any N 6= ∅ it must be either still a �e-minimal solution or it
is not a solution at all. The DP algorithm for an arbitrary problem (T ,A, P,N)
first generates a candidate solution D by means of the NP algorithm used in (2),
and then ensures it is a minimal one (in either sense �e or �b) by executing
a coNP procedure which attempts to find an alternative solution (D)′ refuting
the minimality of D. Finally, it checks that for every q ∈ N it is the case that
T ,A ∪ D 6|= q. The latter problem is clearly coNP-complete, considering NP-
completeness of CQ answering in the considered DL-Lite languages. Naturally,
this holds even when A = ∅. For hardness we consider any language L ∈ NP ∩
coNP, i.e., such that L = L1 ∩ L2 with L1 ∈ NP and L2 ∈ coNP. Naturally, for
any input x, it must be that x ∈ L iff x ∈ L1 and x ∈ L2. But then there must
exist a pair of polynomial reductions R1, R2 from L1 and L2 to some instances
of CQ entailment and non-entailment problems. Note that by involving suitable
vocabulary renaming, both target problems can use the same D and T . Hence,
finding an ABox requested in the lemma must be at least as hard as deciding
x ∈ L. o

A.2 Types, state types, quasimodels

To simplify the proofs of the remaining results, without loss of generality we
assume all TQA problems Ω = (T ,A, φ, n) to be fixed at time n = 0, and we
write Ω = (T ,A, φ) for short. Further, we introduce some auxiliary nomencla-
ture. Consider a TQA problem Ω = (T ,A, φ), where A = (Ai)i∈I . Let sub(φ)
denote the set of all subformulas of φ and their complements. We assume that
all occurrences of double negation symbols in sub(φ) are removed and we write
¬ψ to refer to the complement of formula ψ ∈ sub(φ). A type for φ is a set
t ⊆ sub(φ) such that:

– ψ ∧ ϕ ∈ t iff {ψ,ϕ} ⊆ t, for every ψ ∧ ϕ ∈ sub(φ),
– ψ ∈ t iff ¬ψ 6∈ t, for every ψ ∈ sub(φ).

By T we denote the set of all types for φ. Clearly, |sub(φ)| ≤ 4`(φ) and so
|T | ≤ 24`(φ). A state type is a pair s = (t,B(t)), where t ∈ T and B(t) is an
ABox. A quasimodel for Ω is a sequence of state types s = (si)i∈Z, such that
for si = (ti,B(ti)), with i ∈ Z specified as below, it holds that:

– φ ∈ ti, for i = 0,
– ϕUψ ∈ ti iff there exists j > i such that ψ ∈ tj and ϕ ∈ tk for every
i < k < j, for every ϕUψ ∈ sub(φ) and i ∈ Z,

– ϕSψ ∈ ti iff there exists j < i such that ψ ∈ tj and ϕ ∈ tk for every
j < k < i, for every ϕSψ ∈ sub(φ) and i ∈ Z,
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– B(ti) is a �e-minimal solution to (T ,Ai, P,N), where P = {q | [q] ∈ ti} and
N = {q | ¬[q] ∈ ti}, for every i ∈ I,

– B(ti) is a �e-minimal solution to (T , ∅, P,N), where P = {q | [q] ∈ ti} and
N = {q | ¬[q] ∈ ti}, for every i 6∈ I.

For convenience of some arguments to follow, we also use alternative no-
tation for a quasimodel s = (si)i∈Z, representing it as a pair of sequences
s = ((s+i )i∈N, (s

−
i )i∈N), where (s+i )i∈N = s0, s1, . . . , si, . . ., for i ≥ 0, and

(s−i )i∈N = s0, s−1, . . . , si, . . ., for i ≤ 0. A sequence (si)i∈N is called ultimately
periodic, with the head of length l > 0 and the period of length n ∈ {1, . . . , l},
iff si+kn = si, for every i ≥ l − n and k ∈ N (cf. Figure 1). A quasimodel s
is called ultimately periodic whenever both (s+i )i∈N and (s−i )i∈N are ultimately
periodic sequences.

s0 s3 s3 s3 ℕs1 s2 s4 s2 s4 s2 s4 ...

 l

 n

0 3 6 91 2 4 5 7 8 10 ...                           

Fig. 1. An ultimately periodic sequence (si)i∈N, with l = 5 and n = 3.

The following is a crucial property relating the structure of quasimodels with
the semantics of TQL.

Proposition 1. Let s = ((s+i )i∈N, (s
−
i )i∈N) be a quasimodel for Ω with s∗i =

s∗j , for some ∗ ∈ {+,−} and i, j ∈ N, such that |I∗| ≤ i < j. Let further
(s∗i )

′
i∈N = s∗h(0), . . . , s

∗
h(i), s

∗
h(j+1), . . . be a sequence of state types obtained from

(s∗i )i∈N by removing the subsequence s∗i+1, . . . , s
∗
j and updating the indexing of

the remaining state types via a mapping h : {0, . . . , i, j + 1, . . .} 7→ N, such that
h(k) = k, for every k ≤ i, and h(k) = k − (j − i), for every k ≥ j + 1. Then s′,
obtained from s by replacing (s∗i )i∈N with (s∗i )

′
i∈N, is a quasimodel for Ω.

The argument builds on the observation that s∗i satisfies exactly the same
subformulas of φ as s∗j . Moreover, B(ti), for any I∗ < i, depends exclusively on
ti. Hence, by structural induction over TQL, it follows that no formula in ti can
distinguish between sequences si+1, si+2, . . . and sj+1, sj+2, . . .. Consequently, φ
cannot distinguish between s and s′ at time 0.

Every quasimodel s for Ω can be uniquely associated with a �e-minimal
solution D toΩ, namely the one constructed by fixingDi = B(ti), for every i ∈ Z,
si = (ti,B(ti)). Conversely, every �e-minimal solution to Ω determines uniquely
the corresponding quasimodel, considering that the choice of the ABox B(ti), for
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every ti, unambiguously determines entailment of subformulas [q] and ¬[q] in ti,
for every [q] ∈ sub(φ), which in turn, by structural induction over φ, uniquely
determine entailment of every subformula ψ ∈ sub(φ) in ti. Consequently, we
note the following fact.

Proposition 2. Let D,D′ be two �e-minimal solutions to (T ,A, φ), and s, s′

the quasimodels for Ω, associated with D and D′, respectively. Then D = D′ iff
s = s′.

A.3 TQA in TQL

Lemma 2 (A-sequence vs. A-structure). Let D be an �e- and �s-minimal
solution to a TQA problem Ω = (T ,A, φ), where A = (Ai)i∈I and φ is a TQL
formula. Then there exists an A-structure S whose unfolding is D, such that
|S| = f(`(Ω)), for some function f(x) ∈ O(2x).

Proof. We claim that since D is �s-minimal then the quasimodel s = ((s+i )i∈N,
(s−i )i∈N) for Ω associated with D must be ultimately periodic, with the head
of the sequence (s∗i )i∈N, for ∗ ∈ {+,−}, of length l∗ ≤ |T | + |I∗|. Consider the
sequence (s+i )i∈N and suppose s+i = s+j for some I+ ≤ i < j. By Proposition 1,

we can construct an alternative sequence (s+i )′i∈N = s+h(0), . . . , s
+
h(i), s

+
h(j+1), . . .

and a quasimodel s′ = ((s+i )′i∈N, (s
−
i )i∈N). Then either it holds that s′ 6= s or

s′ = s. Suppose the first case applies. Then by Proposition 2, s′ must be asso-
ciated with some solution D′ 6= D. Clearly, however, D′ ⇀0 D (where h is the
mapping warranting the relation ⇀0), and so D is not �s-minimal, which contra-
dicts the assumption. Alternatively, consider the latter situation. Then it follows
that sequence s+i+1, . . . , s

+
j belongs to the periodic fragment of (s+i )i∈N, where

kn+ = j−i for the period n+ and some k ∈ N. This conclusion follows by induc-
tion over the structure of (s+i )i∈N. Observe that the sequence s+j+1, . . . , s

+
j+1+(j−i)

in s must be equal to s+i+1, . . . , s
+
j or else it would not be the case that s = s′.

But then, by the same token, the follow-up sequence of the same length must be
equal to s+j+1, . . . , s

+
j+1+(j−i), and so on. Finally, consider some s+i = (ti,B(ti))

and s+j = (tj ,B(tj)) in s, such that I+ ≤ i < j, ti = tj and B(ti) 6= B(tj).

Then by fixing s+j := (tj ,B(ti)) we obtain an alternative quasimodel s′ in which

s+i = s+j , and the entire argument above applies again. Clearly, there must exist
a fixpoint at which any further application of the argument from Proposition 1
returns consistently the same (ultimately periodic) sequence. At that point the
head of that sequence consists of at most I+ initial state types, corresponding
to (Ai)i∈[0,I+], followed by at most |T | unique state types. No later than at that

point the first duplicate state type in (s+i )i∈N must occur, marking the end of the
first period in the sequence. By an exactly symmetric argument it follows that
(s−i )i∈N must be also an ultimately periodic sequence with at most |I−| + |T |
different state types in the head. Hence, s must be indeed an ultimately periodic
quasimodel using at most |I|+ |T | different state types.
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Given the existence of the quasimodel s for Ω, with above stated properties
the construction of an A-structure S = (S,S0,→) postulated by the lemma is
straightforward. We set:

– Si := B(ti), for every 0 ≤ i ≤ l+ − 1 and s+i = (ti,B(ti)),
– S−i := B(ti), for every 0 ≤ i ≤ l− − 1 and s−i = (ti,B(ti)),
– Si → Si+1, for every 0 ≤ i < l+ − 1,
– S−i → S−i−1, for every 0 ≤ i < l− − 1,
– Sl+−1 → Sl+−n+ ,
– S−l−+1 → S−l−+n− .

Then S+ = {Si | i ≥ 0} and S− = {Si | i ≤ 0}. By the construction of S,
definition of quasimodels and their ultimate periodicity, demonstrated above, it
follows that D must be the unfolding of S. Clearly, |S| ≤ |T | + |I|, where |T |
is exponential in `(Ω) and |I| linear. Therefore, there exists a function f(x) ∈
O(2x), such that |S| ≤ f(`(Ω)). o

Theorem 1 (Recognizing TQA solutions). Recognizing an �e- and �s-
minimal solution to a TQA problem Ω = (T ,A, φ), where φ is a TQL formula,
is PSpace-complete.

Proof. The hardness transfers from the satisfiability problem in LTL. Note that
CQs in TQL can be used simply as propositions, where the CQ associated with
proposition p is fixed as qp = Ap(x), for a designated concept name Ap. Then
an LTL formula is satisfiable iff there exists a �e- and �s-minimal solution
to the A-sequence problem (∅, ∅, φ), where φ is the corresponding TQL query,
instantiated with x 7→ a, for some unique a ∈ NI . Recall, that satisfiable LTL
formulas must have ultimately periodic models of at most exponential size [21].

Next, we establish the upper bound by augmenting the decision procedure for
LTL with an additional DP routine which computes solutions to the ABox ab-
duction problems handled in the consecutive states of a generated quasimodel. At
the start, the algorithm guesses four numbers: the lengths of the heads l−, l+ ≤
|T |+ |I| and the respective periods n− ∈ {1, . . . , l−} and n+ ∈ {1, . . . , l+}. Then
it non-deterministically picks a type t0 for φ such that φ ∈ t0, and selects B(t0)).
The latter choice is made using a DP routine described in Lemma 1, in such a
way that the suitable conditions in the definition of the quasimodel are satisfied.
Then for every 1 ≤ i ≤ l+, the algorithm picks a type ti and B(ti) and ensures
the following conditions hold:

– for every ϕUψ ∈ ti−1, if ¬ψ ∈ ti then ϕUψ ∈ ti and ϕ ∈ ti,
– for every ϕUψ ∈ ti, if ϕ ∈ ti then ϕUψ ∈ ti−1,
– if ψ ∈ ti then ϕUψ ∈ ti−1, for every ϕUψ ∈ sub(φ),
– for every ϕSψ ∈ ti, if ¬ψ ∈ ti−1 then ϕSψ ∈ ti−1 and ϕ ∈ ti−1,
– for every ϕSψ ∈ ti−1, if ϕ ∈ ti−1 then ϕSψ ∈ ti,
– if ψ ∈ ti−1 then ϕSψ ∈ ti, for every ϕSψ ∈ sub(φ),
– tl+ = tl+−n+ and B(tl+) = B(tl+−n+),
– for every ϕUψ ∈ tl+−n+ , there is j > l+ − n+ such that ψ ∈ tj ,
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Further for every 1 ≤ i ≤ l−, the algorithm picks a type ti and B(ti) and ensures
the following conditions hold:

– for every ϕSψ ∈ ti−1, if ¬ψ ∈ ti then ϕSψ ∈ ti and ϕ ∈ ti,
– for every ϕSψ ∈ ti, if ϕ ∈ ti then ϕSψ ∈ ti−1,
– if ψ ∈ ti then ϕSψ ∈ ti−1, for every ϕSψ ∈ sub(φ),
– for every ϕUψ ∈ ti, if ¬ψ ∈ ti−1 then ϕUψ ∈ ti−1 and ϕ ∈ ti−1,
– for every ϕUψ ∈ ti−1, if ϕ ∈ ti−1 then ϕUψ ∈ ti,
– if ψ ∈ ti−1 then ϕSψ ∈ ti, for every ϕUψ ∈ sub(φ),
– tl− = tl−−n− and B(tl−) = B(tl−−n−),
– for every ϕSψ ∈ tl−−n− , there is j > l− − n− such that ψ ∈ tj .

It is not difficult to observe that the two sequences of state types generated
in accordance with the rules above comprise an ultimately periodic quasimodel
for Ω. During its run, the algorithm requires at most polynomial space of the
working memory, in order to store three state types (tl∗−n∗ and the current pair
ti, ti+1). The A-structures associated with the generated sequences are system-
atically written down on the output tape during the computation process and
ended with a designated symbol marking that the sequence is eventually ac-
cepted by the procedure. By Lemma 2, every �e- and �s-minimal solution to Ω
must be found as one of such outputs. We thus obtain a NPSpace procedure,
which by Savage’s theorem is in PSpace. o

A.4 TQA in TQLF,P,TQL+,TQLF,P,+

Lemma 3 (A-sequence vs. A-structure for TQLF,P,TQL+). Let D be an
�e- and �s-minimal solution to a TQA problem Ω = (T ,A, φ), where A =
(Ai)i∈I and φ is a TQLF,P or TQL+ formula. Then there exists an A-structure
S whose unfolding is D, such that |S| ≤ f(`(φ)), for some f(x) ∈ O(x).

Proof. As the starting point we consider the result in Lemma 2, and the ar-
gument used in its proof. Here, we essentially show that that argument can be
pushed further in case of TQLF,P and TQL+, leading to a smaller upper bound
on the size of relevant A-structures, with |S| ≤ 2`(φ) + |I|. Consider an �e- and
�s-minimal solution D and its corresponding, ultimately periodic quasimodel
s = (si)i∈Z with the heads of length l∗. We show that l∗ ≤ 2|`(φ)| + |I| or else
D cannot be �s-minimal. Let O be the set of all U- and S-formulas used in
the sequence of h = s−l−+1, . . . , sl+−1, which is obviously equivalent to the set
of all such formulas used in the entire s (recall that these can be only of the

form >Uψ and >Sψ). Clearly, |O| ≤ |sub(φ)|2 . By the semantics of TQL and the
construction of the quasimodel, every such formula must be fulfilled somewhere
within the sequence s−l− , . . . , sl+ . For every >Uψ ∈ O let max(ψ) < l+ be the
largest number such that ψ ∈ tmax(ψ), for smax(ψ) = (tmax(ψ),B(tmax(ψ))). For
every >Sψ ∈ O let min(ψ) > l− be the smallest number such that ψ ∈ tmin(ψ),
for smin(ψ) = (tmin(ψ),B(tmin(ψ))). Next, we mark selected state types in h by
running the following procedure until saturation:
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– si is marked, for every i ∈ I,
– for every l− < i < l+, if si = (ti,B(ti)) is marked and:

• >Uψ ∈ ti, for some >Uψ ∈ O, then mark smax(ψ),
• >Sψ ∈ ti, for some >Uψ ∈ O, then mark smin(ψ).

Clearly, there can be at most |F | + |I| state types marked after the procedure
terminates. Remove all state types that are not marked and consider the remain-
ing sequence, with a suitable revised indexing. It is not difficult to see, that this
sequence forms in fact the heads of two ultimately periodic sequences comprising
another quasimodel s′ for Ω. We can thus follow an argument from the proof of
Lemma 2 and consider two disjoint cases: s 6= s′ or s = s′. In the first scenario,
we conclude that the solution D cannot be in fact �s-minimal, which contradicts
the original assumption. Hence the latter must be true. But this means that all
state types in the head of s must have been marked by the procedure, and so
the length of the head is bounded by |F | + |I|, i.e., l ≤ 2`(φ) + |I|. The final
A-structure is constructed exactly as in the proof of Lemma 2. o

Theorem 2 (Recognizing TQA solutions for TQLF,P). Recognizing an �e-
and �s-minimal solution to a TQA problem (T ,A, φ), where φ is a TQLF,P

formula, is DP-complete.

Proof. For the upper bound we consider an algorithm, which first guesses
the numbers l∗ ≤ 2`(φ) + |I∗|, n∗ ∈ {1, l∗}, for ∗ ∈ {−,+}, and next it non-
deterministically generates a sequence of types t−l− , . . . , tl+ alongside the corre-
sponding ABoxes B(t−l−), . . . ,B(tl+). The latter step involves a DP routine, as
described in the proof of Lemma 1, requested to satisfy the criteria characteriz-
ing quasimodels. For every −l− ≤ i ≤ l+, the algorithm verifies satisfaction of
the following conditions:

– >Uψ ∈ ti−1, for every >Uψ ∈ ti,
– if ψ ∈ ti then >Uψ ∈ ti−1, for every >Uψ ∈ sub(φ),
– for every >Uψ ∈ tl+−n+ , there is j > l+ − n+ such that ψ ∈ tj ,
– tl+ = tl+−n+ and B(tl+) = B(tl+−n+),
– >Sψ ∈ ti, for every >Sψ ∈ ti−1,
– if ψ ∈ ti−1 then >Sψ ∈ ti, for every >Sψ ∈ sub(φ),
– for every >Sψ ∈ t−l−+n− , there is j < −l− + n− such that ψ ∈ tj ,
– t−l− = t−l−+n− and B(t−l−) = B(t−l−+n−).

Whenever the conditions are satisfied, the sequence D, such that Di = B(ti), for
every −l− < i < l+, and Di = ∅, for i ≤ −l− or i ≥ l+, is returned as a relevant
solution to the problem Ω. By Lemma 3, every �e- and �s-minimal solution to
Ω must be found as one of the outputs. The lower bound follows by reduction
from an arbitrary DP-complete problem, conducted precisely as in the proof of
Lemma 1, point 3, where the entailment and non-entailment of CQs are again
the target NP- and co-NP-complete problems in the reduction. o
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Theorem 3 (Recognizing TQA solutions for TQL+,TQLF,P,+). Recogniz-
ing a �e- and �s-minimal solution to a TQA problem Ω = (T ,A, φ), where
φ is a TQL+ or TQLF,P,+ formula, is NP-complete. The result holds even for
�b-minimal solutions and when A = ∅.

Proof. The upper bound follows by the algorithm analogical to that used in
Theorem 2. The only difference is that given a type t for Ω a corresponding
solution B(t) can be computed at worst in NP (by Lemma 1, points 1, 2). Hence
the algorithm must only guess the suitable sequence of types, which is a problem
in NP.

The lower bound is demonstrated by reduction from the NP-complete Hamil-
tonian path problem, defined as follows: given a directed graph G = (V,E) decide
whether there exists a path through G which visits every vertex exactly once.
With every vertex v ∈ V , we associate a query qv = Av(x), for a designated con-
cept name Av. Consider a formula φ =

∧
v∈V (>Uqv) instantiated with x 7→ a,

for some unique a ∈ NI . Then there exists a Hamiltonian path through G iff
there exists a �b/e- and �s-minimal solution D to (∅, ∅, φ) such that:

– there exists a bijection h : V 7→ {1, . . . , |V |}, such that for every v ∈ V :
• Av(a) ∈ Dh(v),
• Au(a) 6∈ Dh(v), for every u ∈ V with u 6= v,
• (v, u) ∈ E, for u ∈ V such that h(u) = h(v) + 1,

– Di = ∅, for every i ∈ Z \ {1, . . . , |V |}.

Observe that for a given A-structure S, associated with D, verifying the con-
ditions above can be done in time linear in the size of S, and thus in the size
of the input. Hence, the verification step does not add to the complexity of the
problem. Clearly, whenever D does satisfy the conditions above it contains the
hamiltonian path through G, given via h. Conversely, suppose that there exists
a Hamiltonian path through G. Then clearly there must exist an A-sequence D,
described as above, which solves (∅, ∅, φ). It is not difficult to see that such an
A-sequence is both �b/e- and �s-minimal. o
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