
Representing Definitional Changes in Legal
Ontologies

Szymon Klarman and Marc Bron

University of Amsterdam
Leibniz Center for Law

{sklarman, mbron}@science.uva.nl

Abstract. A definitional change is one of the common ways in which
legal ontologies can be amended. A revision of the meaning of a term
in a model of legislation entails different classification of individuals,
and thus affects knowledge about the domain and possibly the set of
normative consequences implied by the model. In the paper we propose
and discuss a description logic based representation that allows modeling
and switching between different definitional variants of concepts used in
an ontology.

1 Introduction

An ontology represents a shared conceptualization, by means of which a certain
domain is comprehended, and provides a semantic basis for reasoning about
objects in the domain. One of the central constructs employed in ontologies is
concept definition. A definition determines all sufficient and necessary conditions
that an individual has to satisfy in order to be classified as an instance of a
particular concept.

A serious challenge for ontology design and maintenance, broadly discussed in
the recent literature (e.g. [EK04], [HH00], [HSV04]), concerns handling dynamic
aspects of represented knowledge. A special case of that problem, which is in the
focus of this paper, is how to approach changes that affect definitions of terms
covered by an ontology.

In some domains, such as science or law, introducing definitional changes is a
relatively common practice. For instance, new scientific theories lead to revisions
of concepts used differently within the previously accepted body of knowledge,
whereas pieces of legislation impose new interpretations on terms defined in older
legislative documents. Such changes can clearly have far-reaching implications
both from epistemic and pragmatic perspective. A new concept definition entails
a different classification of objects in the domain, which, by the entrenchment
of terms in the ontology, can effect in a deep restructuring of the domain’s
representation. Consequently, reasoning over the revised ontology is unlikely to
result in the original set of conclusions. For instance, definitional changes in law

can bring about new normative consequences and thus directly affect rights and
obligations of citizens1.

Interestingly, however, there is a significant asymmetry in the status granted
to outdated definitions in different domains. Parts of scientific knowledge that are
replaced with more recent results are simply considered false and, hence, deprived
of any substantial value. It is always the most recent version of an ontology that
is applied to provide reliable explanations and predictions in science. Conversely,
in law there is a justified interest in keeping track of older versions. A legal case
can be properly assessed only according to law that is applicable at the time the
case takes place. Since it is often necessary in the process to consider and analyze
past cases, previous ontologies of law have to stay available. We conclude that
the sort of revision that a legal ontology is submitted to in face of a definitional
change is therefore not that of a plain update but rather of versioning, and hence
requires a more cautious and sophisticated approach.

In this paper we want to address the problem of handling definitional changes
in legal ontologies and propose a description logic based representation, which
provides a simple, but in many respects convenient ontology versioning tech-
nique. The representation consists of a set of TBox and ABox axiom schemes,
which implemented in an ontology, allow for reasoning about a domain in se-
lected points of time strictly according to concept definitions valid at that time.
In the next section we review related work and formulate basic requirements
for an ontology versioning formalism. In the following part we present the main
result of the work and close the paper with conclusions and discussion of the
proposed solution.

2 Background

2.1 Related Work

Representing change and handling different variants of ontologies is the subject
of research on ontology evolution and versioning.

In ontology evolution the focus lies on implementing a change in an existing
ontology, while maintaining consistency. For example, deleting a concept from
an ontology requires deletion of all semantic links to this concept. Until all these
have been removed, the ontology remains inconsistent. However, finding all the
links can be difficult in even a small ontology and so revising becomes a labori-
ous task. Systems that support knowledge engineers in updating ontologies and
finding and resolving inconsistencies are e.g. KAON [Sto04] and evOWLution
[HSV04].

In ontology versioning, changes are handled by creating new versions of an
ontology. Besides recording changes and relations between different versions,
it is useful to know if an ontology is backward compatible with the previous

1 For an illustrative example see discussion on the consequences of changing the defini-
tion of “Dependent” in “Working Families Tax Relief Act” accepted by the Congress
of USA in October 2004 [BIB04].

version. When an application depends on a certain ontology, of which a new
version becomes available, knowing if the version can also be used is essential
for proper functioning of the application. A system that implements such a
versioning system is e.g. SHOE [HH00].

Efforts at combining both strategies in a single system are described in
[KN04].

In the case of dynamic domains, such as law, whose past representations
should stay accessible to reasoning services, for every change a different version
of the ontology has to be maintained. Issues of special importance here are
that compatibility between different versions has to be guaranteed, that there
should be a quick way of switching between ontologies and that redundancy of
representation should be reduced to a minimum.

Such an approach, by which multiple changes can be represented in a single
ontology is described in [EK04], where a timestamping technique is used. An
ontology is described by a graph where each node (concept) and edge (property)
is supplied with a timestamp indicating its validity.

The three proposed ways of implementation are:

Meta Ontology: an ontology that stores different versions of an ontology with
their timestamps and deals with the sturctural and temporal relationships
between the different ontologies.

Standard Extension: extending a representation language with the capability
to represent time and change.

Using Standard: using standard techniques provided by a representation lan-
guage to timestamp concepts; versionInfo tag or isDefinedBy tag.

Each of the three techniques are reported to have drawbacks when imple-
mented in OWL. One of them is that an ontology that incorporates timestamps
would not support reasoning if the time dimension is not considered in the right
way. Basically, a reasoning algorithm should only infer conclusions that are valid
for the current time point. Another reported drawback is that OWL does not
guarantee that temporal constraints are correctly interpreted, e.g. that a relation
can only exist between two concepts that are both valid at the same time.

Furthermore, in a timestamping approach care must be taken that no update
blowup is caused. If, for example, a concept A has a relation to concept B and
the latter concept is updated to a new definition B′, then A has to be updated
as well to A′, so that the relation of A′ points to B′. Now any concept with a
relation to A also has to be updated.

Alternatively, one can handle definitional changes by resorting to rules in
order to classify only relevant individuals at particular points in time. In a rule
language like SWRL definitional variants of “block” can be expressed like:

Rule 1: square(?x) ∧ wood(?x) ∧ time(t1) ∧ valid at(?x, t1) ⇒ block(?x).
Rule 2: rectangle(?x) ∧ metal(?x) ∧ time(t2) ∧ valid at(?x, t2) ⇒ block(?x).

Such an approach would certainly tackle some of the discussed problems,
however, applying a rule formalism in ontology modeling should never be pre-
ferred over standard ontology languages because of the risk of undecidability

and the need for employing an additional rule engine for obtaining standard
reasoning services (here classification tasks).

2.2 Formalism Requirements

Taking all the above into account leads to the following requirements for a rep-
resentation formalism:

– Preventing many versions with only small changes.
– Relying on standard languages and reasoning tools and keeping the archi-

tecture possibly homogenous.
– Enabling the possibility of switching between versions of the ontology.
– Preventing an update blowup.
– Maintaining compatibility to maximum possible extent.

The solution proposed in this paper can be used to represent concepts that
change (dynamic concepts) in a single ontology, using OWL DL while preserving
the possibility of using a standard reasoner.

Intuitively the formalism can be explained as follows (see figure 1): a generic
concept C is defined in terms of the subsumed concepts: C1, C2 or C3, repre-
senting its different definitional variants. Each variant is scoped, to be only valid
within a certain time period. Similar temporal limits are imposed on individuals
in the domain.

current interval

time intervalsco
nc

ep
ts

in
di

vi
du

al
s

C2≡R2

C

C3≡R3C1≡R1

i1: R1

i2: R1 u R2

i3: R2

Figure 1.

Respective concepts and individuals are activated by specifying which point
in the time line is the current or valid time. Only those entities, for which the
current time falls within their scope are considered. Consequently, the generic
concept receives the meaning of its appropriate variant and covers only the
relevant and existing individuals.

By selecting the current time point only the version of the ontology that is
valid at that point is satisfiable.

2.3 Preliminaries

The representation requires a description logic language as expressive as SHOIN .
The expressiveness of SHOIN is directly supported by OWL-DL, what makes
implementing the solution in OWL ontologies practically straightforward2. In
the presentation we will use some of the standard description logic constructors,
which along their OWL counterparts and underlying semantics are summarized
in the Appendix.

Vocabulary of a DL knowledge base consists of a set of concept names NC ,
role names NR and individual names NI . The semantics is given by an inter-
pretation I = (∆I , ·I), where ∆I is a non-empty domain of individuals and ·I
is a function interpreting the vocabulary in terms of domain objects. The se-
mantics of complex concepts and roles is defined inductively on the set of DL
construction rules.

A concept definition in DL is an expression C ≡ D, where C and D are two
concepts and C ∈ NC . A finite set of concept definitions with unique left hand
side concept names forms a terminology (TBox). The definition is satisfied in I
provided that CI = DI . We can further distinguish between atomic concepts
that occur on the left hand side of some TBox axiom (defined concepts) and ones
that are used only on the right hand side of definitions (primitive concepts). Since
SHOIN language accounts also for nominals (i.e. enumerations of individuals),
which might be equally used in definitions, we will cover them with an extended
notion of primitive concepts.

A base interpretation I for a TBox is one that interprets only its primi-
tive concepts. An interpretation J is an extension of I, if it interprets also
defined concepts, while agreeing with I as to the domain of interpretation and
to interpretation of primitive concepts. A terminology is definitorial if its base
interpretation determines a unique extension [BN03].

An ABox consists of a finite set of assertions of one of the following forms:
C(a), r(a, b),¬r(a, b), where a, b ∈ NI , C ∈ NC and r ∈ NR. Assertions in ABox
are naturally understood as pieces of information about the represented world,
expressed by means of selected vocabulary.

In the further presentation we will refer to an arbitral definitorial knowledge
base K(T ,A) with a model I = (∆I , ·I). Formally, we shall develop a formalism
for representing a a concept C by means of its definitional variants and a simple
mechanism for selecting a valid time i ∈ {1, . . . , n}, such that the respective
version Ki of K has the same base interpretation as K but possibly a different
extension Ji, yielding CJi = CJi

i , where Ci represents a proper variant of the
concept C in time i.

3 Representation

We shall now give a systematic account of the representation, introducing consec-
utive stages in its composition and translating them into DL constructs, which
2 The only restriction regards the Unique Name Assumption. We address this issue at

the end of the paper.

a DL knowledge base has to account for in order to support definitional changes
along the proposed lines. The representation has a three-layered structure, con-
sisting of a simple temporal framework, a collection of timestamp restrictions
on individuals and a set of timescope restrictions on concepts. The valid time
selection is handled on the TBox level, by allowing alternative definitions of a
designated concept.

3.1 Temporal Framework and Valid Time Selection

The temporal framework, underlying the representation, is based on interval
algebra and defined as a tuple 〈T,�〉 [Zar98]. A finite, non-empty set T con-
tains elements denoted as chronons, i.e. undecomposable time intervals [JD98],
whereas � is a total order on T , i.e. an ordering relation that satisfies the fol-
lowing conditions. For every t1, t2, t3 ∈ T :

1. If t1 � t2 and t2 � t1 then t1 = t2 (antisymmetry).
2. If t1 � t2 and t2 � t3 then t1 � t3 (transitivity).
3. t1 � t2 or t2 � t1 (completeness).

In other words, a tuple 〈T,�〉 constitutes a discrete, finite time axis, whose
atoms are chronons.

The framework can be directly embedded in K by means of a primitive con-
cept TimeInterval ∈ NC , such that TimeIntervalI 6= ∅, and a role beforeEq ∈
NR. The ABox has to be equipped with a set of assertions guaranteeing that
beforeEq is a total ordering on TimeIntervalI , i.e. it is antisymmetric, tran-
sitive and complete3. For more flexibility we shall require also an inverse of
beforeEq:

afterEq = beforeEq−

Obviously, afterEq is also a total order on TimeIntervalI .
The three specified constructs are sufficient to provide a frame of reference

for representing temporal aspects of definitional changes, including the dynamics
of a domain on the level of individuals. For simplicity, we will assume that there
are exactly n individuals in TimeIntervalI , all of which are represented in NI

by unique names, whose indexes correspond to positions in the ordering, i.e.:

1. {intervalI1 , . . . , intervalIn} = TimeIntervalI

2. for any intervali and intervalj , if i ≤ j then A contains the following two
assertions:
(a) beforeEq(intervali, intervalj)
(b) afterEq(intervalj , intervali)

3 In practice, it should be more convenient to first define an auxiliary role
directlyBeforeEq that accounts for identity relation on TimeIntervalI and
provides links between all immediate successors and predecessors in the order-
ing, and then augment it with transitive closure, so that directlyBeforeEq t
directlyBeforeEq+ ≡ beforeEq.

In order to control the focus of a knowledge base we require a valid time
selection mechanism, which will allow pointing to a particular interval, with
respect to which relevant concepts and individuals will be activated. There
are many ways to achieve such a function. Here we propose a simple method
based on a single concept definition using a nominal. For some i ∈ {1, . . . , n} let
CurrentInterval ∈ NC be defined as:

CurrentInterval ≡ {intervali}

As will be shown, the rest of the formalism essentially relies on the interpre-
tation of CurrentInterval, thus the choice of the interval is propagated to the
whole knowledge base.

The approach has two apparent advantages. First, it enables a very easy way
for switching between versions. Second, it does not affect the base interpretation
of the knowledge base, what may potentially simplify certain reasoning tasks.
Observe, that if two knowledge bases K(T ,A) and K′(T ′,A) differ from each
other only with respect to the choice of the current interval, none of the primitive
concepts obtains a different interpretation, hence, switches entail changes only
for extensions of the base interpretation.

3.2 Timestamps and Timescopes

At the next stage we relate individuals and concepts to the time axis. For that
purpose we apply two relations: from, to ∈ Nr.

The idea of a timestamp, which links an individual to intervals of time, is
very intuitive and boils down to marking exactly two limits of the individual’s
existence in a domain of application [Zar98]. We adapt this explication in the
following general definition:

Timestamped ≡ (∃from.TimeInterval u ≥ 1 from u ≤ 1 from)
u (∃to.TimeInterval u ≥ 1 to u ≤ 1 to)

For any individual a, such that Timestamped(a), the ABox must contain two
other assertions: from(a, intervali) and to(a, intervalj), meaning that a came
into existence in intervali and ceased to exist in intervalj . Naturally, it should
be assured that 1 ≤ i ≤ j ≤ n.

Complementarily to timestamps, we specify timescopes for concepts, which
denote a period of time during which a given concept remains valid. A general
timescope will be represented by the following axiom scheme:

Timescope(i,j) ≡
TimeInterval u ∃afterEq.{intervali} u ∃beforeEq.{intervalj}

Clearly, given a total ordering of time intervals, an interpretation function maps
Timescope(i,j) onto the subset of exactly those intervals that are placed between
intervali and intervalj (including the two) on the time axis. Again, a proper
ordering 1 ≤ i ≤ j ≤ n should be satisfied.

Recall that the goal of the representation is to restrict classification only
to individuals and concepts valid at a given point of time. Hence it has to be
assured, that given the current interval the definition of a valid concept can be
satisfied only by individuals that exist in that interval, and conversely, that none
of the definitions of invalid concepts are satisfiable. We obtain this feature in two
steps.

First we allow a specific interplay between concepts CurrentInterval and
Timescope(i,j). Let CTimescope(i,j) be a concept defined as follows:

CTimescope(i,j) ≡ CurrentInterval u TimeScope(i,j)

Observe, that for any interpretation function ·J it holds that:

CTimeScopeJ(i,j) =

{
CurrentIntervalJ iff CurrentIntervalJ ⊆ TimeScopeJ(i,j)
∅ iff CurrentIntervalJ 6⊆ TimeScopeJ(i,j)

In other words, an interpretation of CTimeScope(i,j) is a singleton with the cur-
rent interval as its only member, provided that the respective timescope contains
the current interval. Otherwise the interpretation of the concept is an empty set.
It is straightforward to employ this property for distinguishing between valid and
invalid concepts. Intuitively, valid concepts are those, whose time scopes contain
the current interval. At the same time, we want to address only existing individ-
uals, i.e. those that came into existence before or during the current interval and
ceased to exist during or after it. We combine the two operations in the second
step, by defining CTSRestriction(i,j) as:

CTSRestriction(i,j) ≡
∃from.(∃beforeEq.CTimeScope(i,j)) u ∃to.(∃afterEq.CTimeScope(i,j))

Augmenting definition of any concept C with CTSRestriction(i,j) results in
two possible outcomes. If intervalk, being the current interval, is such that
i ≤ k ≤ j, then CJ will be restricted only to those timestamped individuals
that exist in intervalk. If, however, k < i or j < k then C will be unsatis-
fiable with respect to the TBox, while there is no individual that can satisfy
CTSRestriction(i,j). For a more formal explanation see the Appendix.

3.3 Implementation

Finally we shall briefly outline how the representation can be usefully applied in
a knowledge base in order to yield desired effects for classification tasks.

Let DynamicConcept ∈ NC be a concept whose definition changes over time
and {Variant1, . . . , Variantm} ⊆ NC its m consecutive variants, where index
k ∈ {1, . . . ,m} uniquely identifies each of them. We want the variants to exclu-
sively and exhaustively cover the time axis. Let us then assume that there is
a function τ that assigns to every variant k an ordered pair (i, j), with i ≤ j,
representing the time scope in which the variant is valid, in such a way, that
jointly the time scopes generate a partition of the time axis, i.e.:

1. for k = 1, τ(k) = (1, i),
2. for k = m, τ(k) = (j, n), where n is the greatest interval on the axis,
3. for any 1 ≤ k < m, τ(k) = (i, j) and τ(k + 1) = (j + 1, l).

Formally, we will define every variant as an intersection of its proper meaning,
expressed in terms of some terminological restrictions, and the respective time
scope restriction:

Variantk ≡ Meaningk u CTSRestrictionτ(k)

Finally, the definition of DynamicConcept will be simply stated as the union
of all its variants:

DynamicConcept ≡ Variant1 t . . . t Variantm

This accomplishes the implementation. Observe that in each point of time
there is exactly one valid variant. Therefore, if intervalc represents the current
interval, then interpretation of DynamicConcept is determined by the following
equality:

DynamicConceptJc = VariantJc

k

where τ(k) = (i, j) and i ≤ c ≤ j.
Concluding, independently of the choice of the valid time DynamicConcept

always denotes these and only these individuals that currently exist and fall un-
der the currently valid meaning of DynamicConcept. As an illustration consider
the following example. Let DynamicConcept ≡ C1tC2tC3, where the consecutive
variants are defined as follows:

C1 ≡ R1 u CTSRestriction(1,3)

C2 ≡ R2 u CTSRestriction(4,7)

C3 ≡ R3 u CTSRestriction(8,10)

We will focus on three timestamped individuals of the following asserted prop-
erties:

i1 :from(i1, interval1), to(i1, interval6), R1(i1)
i2 :from(i2, interval2), to(i2, interval10), R1(i2), R2(i2)
i3 :from(i3, interval6), to(i3, interval9), R3(i3)

Observe, that depending on the choice of the current interval the following ex-
tensions of DynamicConcept will be inferred:

CurrentIntervalJ Valid Variant DynamicConceptJ

interval1 C1 i1

interval3 C1 i1, i2

interval5 C2 i2

interval9 C3 i3

interval10 C3 none

Finally, a short comment with respect to implementation in OWL is in order.
Notice, that whereas DL naturally complies to the Unique Name Assumption
(UNA), OWL does not. From our experience in implementing the representa-
tion in OWL ontologies, it follows that the difference can bring about some
unexpected classification results, caused by misinterpretation of the time axis
by an OWL reasoner. Basically, whenever it is possible a reasoner attempts to
equate some of the time intervals in order to obtain a satisfiable interpretation of
all concepts in the ontology. To avoid such unintended interpretations, it is nec-
essary to explicitly distinguish between time intervals using owl:differentFrom
construct.

On the other hand, lack of UNA in OWL allows for an alternative treat-
ment of the valid time selection mechanism. Instead of defining a concept called
CurrentInterval we can introduce an individual of the same name, which can
be easily identified with any interval by means of the owl:sameAs construct. As
a consequence the choice of the current interval is held outside of the TBox.
It may be also useful to employ another auxiliary individual LastInterval,
equated to the last interval on the axis, to serve as the right limit of timestamps
and timescopes of all those individuals and concepts which have not in fact be-
come outdated at the time of implementation. Extending the time axis in an
ontology, does not require then updating information about those entities, but
merely changing the referent of LastInterval.

4 Conclusions and Discussion

In this paper we have proposed a representation for supporting definitional
changes in ontologies, motivated predominantly by requirements from the le-
gal domain. The solution can be expressed as a set of TBox and ABox axioms
in DL SHOIN and thus is easily implementable in OWL-DL knowledge bases.
The result allows for obtaining correct classifications of individuals in an on-
tology using different variants of concept definitions, applicable within specified
scopes of time intervals. Furthermore, the inherent representation of time pro-
vides a framework for capturing the basic dynamics of the domain on the level
of individuals, and for including temporal aspects directly into the definitions of
concepts.

The solution satisfies the basic requirements with respect to ontology version-
ing formalisms and exhibits several interesting features. First of all, it provides a
convenient mechanism for switching between versions of represented knowledge

and preserves consistency of each representation. Second, the way revisions are
handled in the proposed approach prevents an update blowup and maintains
backward compatibility between versions. Notice, that a definitional change is
implemented monotonically, only by introducing new concepts to the current
ontology. All remaining parts, even if referring to the name of a generic concept,
are not altered. This property seems especially valuable for reuse and mainte-
nance of legal ontologies, taking into account a typical entrenchment of concepts
in a model of legislation. Moreover, the versioning is very space efficient. It is
obtained not on the level of whole ontologies but on the level of representation,
and so can be enclosed in a single knowledge base with no redundancy involved.
Finally, the solution relies exclusively on DL language and standard reasoning
tools providing classification services, e.g. Pellet or Racer. Thus no additional
formalisms nor external ontology management systems have to be employed.

It has to be noted, however, that demonstrated space efficiency is achieved at
the expense of time of classification required whenever a switch between versions
is requested. Whether the trade-off is well balanced depends in principle on the
intended application scenarios and the actual evaluation should be based on a
representative sample of use cases. Presumably, three factors should play a role
here: the size of an ontology, the scope and frequency of introduced changes and
the frequency of version switching requests. The setting in which the solution
might benefit the most is one involving a large model of legislation, to which
frequently small amounts of changes are introduced. Clearly, the less requests
there are for switching between versions the more suitable the representation
proposal seems for the task. In any case one can always obtain separate versions
of an ontology, by asserting inferred classifications for particular points of time,
while still benefiting from the temporal interpretation of the individuals in the
domain.

Elaboration on issues related to efficiency and possible application scenarios,
as well as potential extensions for supporting other types of changes or temporal
reasoning, will be addressed in future research.

References

[BN03] F. Baader, W. Nutt, “Basic Description Logic”, in: F. Baader et al., The De-
scription Logic Handbook: Theory, Implementation, and Applications, Cambridge
University Press, 2003, 47-100.

[HSV04] P. Haase, Y. Sure, D. Vrandecic. Ontology Management and Evolution Sur-
vey, Methods and Prototype. SEKT Formal Deliverable D3.1.1, Institute AIFB,
University of Karlsruhe, 2004.

[HH00] J. Heflin, J. Hendler, “Dynamic Ontologies on the Web”, in: Proceedings of the
17th National Conference on Artificial Intelligence, 2000, 443-449.

[JD98] C.S. Jensen, C.E. Dyreson (eds), “A Consensus Glossary of Temporal Database
Concepts”, in: O. Etzion et al., Temporal Databases: Research and Practise.
Springer-Verlag, 1998, 367-405.

[KN04] M. Klein, N.F. Noy, “Ontology Evolution: Not the Same as Schema Evolution”,
in: Knowledge and Information Systems, 6(4) (2004), 428-440.

[EK04] J. Eder, C. Koncilia, “Modelling Changes in Ontologies”, in: Proceedings of the
On The Move - Federated Conferences, 2004, 662-673.

[Sto04] L. Stojanovic, Methods and tools for ontology evolution, Ph.D. Thesis, Univer-
sity of Karlsruhe, 2004.

[Zar98] G.P. Zarri, “Representation of Temporal Knowledge in Events: The Formal-
ism, and Its Potential for Legal Narratives”, in: Information & Communications
Technology Law 7 (1998), 213-241.

[BIB04] “Changes in the Definition of Dependent. Legislative and Regulatory Fixes
Forthcoming (But Not for All Benefits)”, in: Benefits Information Bulletin
03/2004.

Appendix

Constructors. List of OWL/DL constructors used in the representation, and
their semantics:

OWL Constructor DL syntax DL semantics
inverseOf r− {(y, x) | (x, y) ∈ rI}
Transitive r t r+ rI ∪ {(x, z) | (x, y), (y, z) ∈ rI}

intersectionOf C uD CI ∩DI

unionOf C tD CI ∪DI

oneOf {a} {aI}
someValuesFrom ∃r.C {x | ∃y(x, y) ∈ rI ∧ y ∈ CI}

hasValue ∃r.{a} {x | (x, aI) ∈ rI}
minCardinality ≥ n r {x | card({y | (x, y) ∈ rI}) ≥ n}
maxCardinality ≤ n r {x | card({y | (x, y) ∈ rI}) ≤ n}

Table 1.

Validation of Concepts. Let C ≡ CTSRestriction(i,j) and CurrentInterval ≡
{intervalk}. Consider two cases:

1. C is valid in intervalk, i.e. i ≤ k ≤ j. Then the following holds:

CTimeScope(i,j) ≡ CurrentInterval

C ≡ CTSRestriction(i,j) ≡
∃from.(∃beforeEq.CurrentInterval) u ∃to.(∃afterEq.CurrentInterval)

Therefore C addresses only currently existing individuals.

2. C is invalid in intervalk, i.e. k < i or j < k. Then the following holds:

CTimeScope(i,j) ≡ ⊥

C ≡ CTSRestriction(i,j) ≡
∃from.(∃beforeEq.⊥) u ∃to.(∃afterEq.⊥)

Clearly there are no such individuals that could satisfy this condition, therefore
CJ = ∅ under any interpretation function ·J .

