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Abstract. Data-driven elicitation of ontologies from structured data is
a well-recognized knowledge acquisition bottleneck. The development of
efficient techniques for (semi-)automating this task is therefore practi-
cally vital — yet, hindered by the lack of robust theoretical foundations.
In this paper, we study the problem of learning Description Logic TBoxes
from interpretations, which naturally translates to the task of ontology
learning from data. In the presented framework, the learner is provided
with a set of positive interpretations (i.e., logical models) of the TBox
adopted by the teacher. The goal is to correctly identify the TBox given
this input. We characterize the key constraints on the models that war-
rant finite learnability of TBoxes expressed in selected fragments of the
Description Logic EL and define corresponding learning algorithms.

1 Introduction

In the advent of the Web of Data and various “e-” initiatives, such as e-science,
e-health, e-governance, etc., the focus of the classical knowledge acquisition bot-
tleneck becomes ever more concentrated around the problem of constructing rich
and accurate ontologies enabling efficient management of the existing abundance
of data [1]. Whereas the traditional understanding of this bottleneck has been
associated with the necessity of developing ontologies ex ante, in a top-down,
data-agnostic manner, this seems to be currently evolving into a new position,
recently dubbed the knowledge reengineering bottleneck [2]. In this view, the
contemporary challenge is to, conversely, enable data-driven approaches to on-
tology design — methods that can make use and make sense of the existing data,
be it readily available on the web or crowdsourced, leading to elicitation of the
ontological commitments implicitly present on the data-level. Even though the
development of such techniques and tools, which could help (semi-)automate
thus characterized ontology learning processes, becomes vital in practice, the
robust theoretical foundations for the problem are still rather limited. This work
is an attempt at establishing exactly such foundations and focuses on some key
theoretical issues towards this goal.

This work was funded in part by the National Research Foundation under Grant no.
85482.



We study the problem of learning Description Logic (DL) TBoxes from inter-
pretations, which naturally translates to the task of ontology learning from data.
DLs are a popular family of knowledge representation formalisms [3], which have
risen to prominence as, among others, the logics underpinning different profiles
of the Web Ontology Language OWL4. In this paper, we focus on the lightweight
DL EL [4] and some of its more specific fragments. This choice is motivated, on
the one hand, by the interesting applications of EL, especially as the logic behind
OWL 2 EL profile, while on the other, by its relative complexity, which enables
us to make interesting observations from the learning perspective. Our learning
model is a variant of learning from positive interpretations (i.e., from models of
the target theory) — a generally established framework in the field of inductive
logic programming [5,6]. In our scenario, the goal of the learner is to correctly
identify the target TBox T given a finite set of its finite models. Our overarching
interest lies in algorithms warranting effective learnability in such setting with
no or minimum supervision. Our key research questions and contributions are
therefore concerned with the identification of specific languages and conditions
on the learning input under which such algorithms can be in principle defined.

In the following two sections, we introduce DL preliminaries and discuss
the adopted learning model. In Section 4, we identify two interesting fragments
of EL, called ELrhs and ELlhs, which satisfy some basic necessary conditions
enabling finite learnability, and at the same time, we show that full EL does
not meet that same requirement. In Section 5, we devise a generic algorithm
which correctly identifies ELrhs and ELlhs TBoxes from finite data, employing
a basic equivalence oracle. Further, in case of ELrhs, we significantly strengthen
this result by defining an algorithm which makes no such calls to an oracle,
and thus supports fully unsupervised learning. In Section 6, we compare our
work to related contributions, in particular to the framework of learning TBoxes
from entailment queries, by Konev et al. [7,8]. We conclude in Section 7 with an
overview of interesting open problems.

2 Description Logic Preliminaries

The language of the Description Logic (DL) EL [4] is given by (1) a vocabulary
Σ = (NC , NR), where NC is a set of concept names (i.e., unary predicates, e.g.,
Father, Woman) and NR a set of role names (i.e., binary predicates, e.g., hasChild,
likes), and (2) the following set of constructors for defining complex concepts,
which shall be divided into two groups:

EL: C,D ::= > | A | C uD | ∃r.C
Lu: C,D ::= > | A | C uD

where A ∈ NC and r ∈ NR. Concept > denotes all individuals in the domain,
C u D the class of individuals that are instances of both C and D, and ∃r.C
describes all individuals that are related to some instance of C via the role r. The

4 See http://www.w3.org/TR/owl2-profiles/.
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set of Lu concepts naturally captures the propositional part of EL. The depth of
a subconcept D in C is the number of existential restrictions within the scope of
which D remains. The depth of a concept C is the depth of its subconcept with
the greatest depth in C. Every Lu concept is trivially of depth 0.

A concept inclusion (or a TBox axiom) is an expression of the form C v D,
stating that all individuals of type C are D. We sometimes write C ≡ D as an
abbreviation for two inclusions: C v D and D v C. For instance, axioms (i)
and (ii) below state, respectively, that (i) the class of mothers consists of all
and only those individuals who are women and have at least one child, (ii) while
every individual of type Father of boy is a father and has at least one male child:

Mother ≡Woman u ∃hasChild.> (i)
Father of boy v Father u ∃hasChild.Man (ii)

A TBox (or ontology) is a finite set of such concept inclusions in a particular
language fragment. The language fragments considered in this paper are classi-
fied according to the type of restrictions imposed on the syntax of concepts C
and D in the concept inclusions C v D permitted in the TBoxes:

EL: C and D are both EL concepts;

ELrhs: C is an Lu concept and D an EL concept;

ELlhs: C is an EL concept and D an Lu concept;
Lu: C and D are both Lu concepts.

For instance, a TBox consisting of axioms (i) and (ii) above, belongs to
language EL, as it in fact contains some ELrhs axioms (Mother v Woman u
∃hasChild.> and (ii)) as well as one ELlhs axiom (Woman u ∃hasChild.> v
Mother).

The semantics of DL languages is defined through interpretations of the form
I = (∆I , ·I), where ∆I is a non-empty domain of individuals and ·I is an
interpretation function mapping each A ∈ NC to a subset AI ⊆ ∆I and each
r ∈ NR to a binary relation rI ⊆ ∆I × ∆I . The interpretation function is
inductively extended over complex expressions according to the fixed semantics
of the constructors:

>I = ∆I

(C uD)I = {x ∈ ∆I | x ∈ CI ∩DI}
(∃r.C)I = {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

An interpretation I satisfies a concept inclusion C v D (I |= C v D) iff
CI ⊆ DI . Whenever I satisfies all axioms in a TBox T (I |= T ), we say that I
is a model of T . Interpretations and models defined in this way are in fact usual
Kripke structures, which can be naturally represented as labelled graphs, with
nodes representing individuals in the domain, edges — roles, and labels — the
interpretations of concept and role names, respectively. For instance, the three
graphs in Figure 1 all represent possible models of the TBox consisting of axioms
(i) and (ii) above:
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Man 

Father, Father_of_boy Man Woman, Mother 

hasChild hasChild hasChild Woman 

I II III 

Fig. 1. Sample DL models.

Note that, as there are no a priori restrictions imposed on the number of
domain individuals, a DL TBox might in general have infinitely many models
of possibly infinite size. For a set of interpretations S, we write S |= C v D to
denote that every interpretation in S satisfies C v D. We say that T entails
C v D (T |= C v D) iff every model of T satisfies C v D. Two TBoxes T and
H are (logically) equivalent (T ≡ H) iff they have the same sets of models.

A pointed interpretation (I, d) is a pair consisting of a DL interpretation
I = (∆I , ·I) and an individual d ∈ ∆I , such that every e ∈ ∆I different from
d is reachable from d through some role composition in I. By a slight abuse of
notation, given an arbitrary DL interpretation I and an individual d ∈ ∆I , we
write (I, d) to denote the largest subset I ′ of I such that (I ′, d) is a pointed
interpretation. If it is clear from the context, we refer to pointed interpretations
and pointed models simply as interpretations and models. We say that (I, d) is
a model of a concept C iff d ∈ CI ; it is a model of C w.r.t. T whenever also
I |= T .

An interpretation (I, d) can be homomorphically embedded in an interpreta-
tion (J , e), denoted as (I, d) 7→ (J , e), iff there exists a mapping h : ∆I 7→ ∆J ,
satisfying the following conditions:

– h(d) = e,
– if (a, b) ∈ rI then (h(a), h(b)) ∈ rJ , for every a, b ∈ ∆I and r ∈ NR,
– if a ∈ AI then h(a) ∈ AJ , for every a ∈ ∆I and A ∈ NC .

A model (I, d) of C (w.r.t. T ) is called minimal iff it can be homomor-
phically embedded in every other model of C (w.r.t. T ). It is well-known that
EL concepts and TBoxes always have such minimal models (unique up to ho-
momorphic embeddings) [9]. As in most modal logics, arbitrary EL models can
be unravelled into equivalent tree-shaped models. Finally, we observe that due
to a tight relationship between the syntax and semantics of EL, every tree-
shaped interpretation (I, d) can be viewed as an EL concept CI , such that
(I, d) is a minimal model of CI . Formally, we set CI = C(d), where for every
e ∈ ∆I we let C(e) = > u A(e) u ∃(e), with A(e) =

d
{A ∈ NC | e ∈ AI} and

∃(e) =
d

(r,f)∈NR×∆I s.t. (e,f)∈rI ∃r.C(f). In that case we call CI the covering

concept for (I, d). For instance, the covering concept for model I in Figure 1
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is > u Father u Father of boy u ∃hasChild.(> uMan), which can be simplified as
Father u Father of boy u ∃hasChild.(Man).

3 Learning Model

The learning model studied in this paper is a variant of learning from positive
interpretations [5,6]. In our setting, the teacher fixes a target TBox T , whose
set of all models is denoted by M(T ). Further, the teacher presents a set of
examples fromM(T ) to the learner, whose goal is to correctly identify T based
on this input. The learning process is conducted relative to a mutually known
DL language L and a finite vocabulary ΣT used in T .

In principle,M(T ) contains sufficient information in order to enable correct
identification of T , as the following correspondence implies:

M(T ) |= C v D iff T |= C v D, for every C v D in L.

However, as M(T ) might consist of infinitely many models of possibly infinite
size, the teacher cannot effectively present them all to the learner. Instead, the
teacher must confine him- or herself to certain finitely presentable subset of
M(T ), called the learning set. For the sake of clarity, we focus here on the
simplest case when learning sets consist of finitely many finite models.5 Formally,
we summarize the learning model with the following definitions.

Definition 1 (TIP). A TBox Identification Problem (TIP) is a pair (T ,S),
where T is a TBox in a DL language L and S, called the learning set, is a finite
set of finite models of T .

Definition 2 (Learner, identification). For a DL language L, a learner is
a computable function G, which for every set S over ΣT returns a TBox in L
over ΣT . Learner G correctly identifies T on S whenever G(S) ≡ T .

Definition 3 (Learnability). For a DL language L, the class of TBoxes ex-
pressible in L is learnable iff there exists a learner G such that for every TBox
T in L there exists a learning set S on which G correctly identifies T . It is said
to be finitely learnable whenever it is learnable from finite learning sets only.

We are primarily interested here in the notion of finite learnability, as it
provides a natural formal foundation for the task of ontology learning from data.
By data, in the DL context, we understand collections of atomic concept and
role assertions over domain individuals (e.g., Father(john), hasChild(john,mary)),
which under certain assumptions regarding their structuring with respect to the
background ontology can be seen as models of that ontology and, consequently,
as potentially valuable learning sets. Figure 2 presents an example of a TIP with

5 An alternative, more general approach can be defined in terms of specific fragments
of models. Such generalization, which lies beyond the scope of this paper, is essential
when the learning problem concerns languages without finite model property.
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Mother ≡Woman u ∃hasChild.>
Father ≡ Man u ∃hasChild.>

Father of boy ≡ Father u ∃hasChild.Man

Man, Father, Father_of_boy 

Man 

Man, Father Woman, Mother 

hasChild hasChild hasChild Woman 

Fig. 2. A sample TIP with an EL TBox and a finite learning set

a finite learning set, which consists of a single model of the assumed ontology.
The key question is then what formal criteria must this set satisfy to warrant
correct identification of the ontology constraining it. To this end we employ the
basic admissibility condition, characteristic also of other learning frameworks
[10], which ensures that the learning set is sufficiently rich to enable precise
discrimination between the correct hypothesis and all the incorrect ones.

Definition 4 (Admissibility). A TIP (T ,S) is admissible iff for every C v D
in L such that T 6|= C v D there exists I ∈ S such that I 6|= C v D.

For the target TBox T , let T 6|= be the set of all concept inclusions in L that
are not entailed by T , i.e., T 6|= = {C v D in L | T 6|= C v D}. The admissi-
bility condition requires that for every C v D ∈ T 6|=, the learning set S must
contain a “counterexample” for it, i.e., an individual d ∈ ∆I , for some I ∈ S,
such that d ∈ CI and d 6∈ DI . Consequently, any learning set must contain such
counterexamples to all elements of T 6|=, or else, the learner might never be jus-
tified to exclude some of these concept inclusions from the hypothesis. If it was
possible to represent them finitely we could expect that ultimately the learner
can observe all of them and correctly identify the TBox. In the next section, we
investigate this prospect formally in different fragments of EL.

4 Finite Learning Sets

As argued in the previous section, to enable finite learnability of T in a given
language L, the relevant counterexamples to all the concept inclusions not en-
tailed by T must be presentable within a finite learning set S. Firstly, we can
immediately observe that this requirement is trivially satisfied for Lu. Clearly,
Lu can only induce finitely many different concept inclusions (up to logical
equivalence) on finite vocabularies, such as ΣT . Hence, the set T 6|= can always
be finitely represented (up to logical equivalence) and it is straightforward to
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finitely present counterexamples to all its members. For more expressive frag-
ments of EL, however, this cannot be assumed in general, as the ∃r.C constructor
induces infinitely many concepts. One negative result comes with the case of EL
itself, as demonstrated in the next theorem.

Theorem 1 (Finite learning sets in EL). Let T be a TBox in EL. There
exists no finite set S such that (T ,S) is admissible.

The full proof of this and subsequent results is included in an online tech-
nical report [11]. The argument rests on the following lemma. Let (T ,S) be an
admissible TIP and C a concept. By S(C) we denote the set of all models (I, d)
of C w.r.t. T such that I ∈ S. By

⋂
S(C) we denote the intersection of all these

models, i.e., the model (J , d), such that:

1. (J , d) 7→ (I, d) for every (I, d) ∈ S(C),
2. for every other model (J ′, d) such that (J ′, d) 7→ (I, d) for every (I, d) ∈
S(C) and (J , d) 7→ (J ′, d), it is the case that (J ′, d) 7→ (J , d).

Lemma 1 (Minimal model lemma). Let (T ,S) be an admissible TIP for T
in EL (resp. in ELrhs), and C be an EL (resp. Lu) concept. Whenever S(C) is
non-empty then

⋂
S(C) is a minimal model of C w.r.t. T .

Given the lemma, we consider a concept inclusion of type:

τn := ∃r. . . . ∃r.︸ ︷︷ ︸
n

> v ∃r. . . . ∃r.∃r.︸ ︷︷ ︸
n+1

>

Suppose τn ∈ T 6|= for some n ∈ N. Since by the admissibility condition a coun-
terexample to τn must be present in S, it must be the case that S(C) 6= ∅, where
C is the left-hand-side concept in τn. By the lemma and the definition of a min-
imal model, it is easy to see that S must contain a finite chain of individuals of
length exactly n+ 1, as depicted below:

• r−−−−−→ • . . . • r−−−−−→ •︸ ︷︷ ︸
n+1

Finally, since there can always exist some n ∈ N, such that τm ∈ T 6|= for every
m ≥ n, we see that the joint size of all necessary counterexamples in such cases
must inevitably be also infinite. Consequently, for some EL TBoxes admissible
TIPs based on finite learning sets might not exist, and so finite learnability
cannot be achieved in general.

One trivial way to tame this behavior is to “finitize” T 6|= by delimiting the
entire space of possible TBox axioms to a pre-defined, finite set. This can be
achieved, for instance, by restricting the permitted depth of complex concepts
or generally setting some a priori bound on the size of axioms. Such ad hoc
solutions, though likely efficient in practice, are not very elegant. As a more
interesting alternative, we are able to show that there exist at least two languages
between Lu and EL, namely ELlhs and ELrhs, for which finite learning sets are
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always guaranteed to exist, regardless of the fact that they permit infinitely many
concept inclusions. In fact, we demonstrate that in both cases such learning sets
might well consist of exactly one exemplary finite model.

We adopt the technique of so-called types, known from the area of modal log-
ics [12]. Types are finite abstractions of possible individuals in the interpretation
domain, out of which arbitrary models can be constructed. Let con(T ) be the set
of all concepts (and all their subconcepts) occurring in T . A type over T is a set
t ⊆ con(T ), such that C uD ∈ t iff C ∈ t and D ∈ t, for every C uD ∈ con(T ).
A type t is saturated for T iff for every C v D ∈ T , if C ∈ t then D ∈ t. For
any S ⊆ con(T ), we write tS to denote the smallest saturated type containing
S. It is easy to see, that tS must be unique for EL.

The next theorem addresses the case of ELrhs. Figure 3 illustrates a finite
learning set for a sample ELrhs TBox, following the construction in the proof.

Theorem 2 (Finite learning sets in ELrhs). Let T be a TBox in ELrhs.
There exists a finite set S such that (T ,S) is admissible.

Proof sketch. Let Θ be the smallest set of types satisfying the following condi-
tions:

– tS ∈ Θ, for every S ⊆ NC and for S = {>},
– if t ∈ Θ then t{C} ∈ Θ, for every ∃r.C ∈ t.

We define the interpretation I = (∆I , ·I) as follows:

– ∆I := Θ,
– t ∈ AI iff A ∈ t, for every t ∈ Θ and A ∈ NC ,
– (t, t{C}) ∈ rI , for every t ∈ Θ, whenever ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. q

A, ∃r.(A⊓B)

A, B, A⊓B, ∃r.(A⊓B), ∃r.∃r.A B, ∃r.∃r.A

∃r.A
r

r
r r

r

Fig. 3. A finite learning set for an ELrhs TBox {A v ∃r.(A u B), B v ∃r.∃r.A}. The
figure includes type contents (in grey), as defined in the proof of Theorem 2.

A similar, though somewhat more complex construction demonstrates the
existence of finite learning sets in ELlhs. Again, we illustrate the approach with
an example in Figure 4.

Theorem 3 (Finite learning sets in ELlhs). Let T be a TBox in ELlhs. There
exists a finite set S such that (T ,S) is admissible.
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Proof sketch. Let Θ be the set of all saturated types over T , and Θ∗ be its subset
obtained by iteratively eliminating all those types t that violate the following
condition: for every r ∈ NR and every existential restriction ∃r.C ∈ t there is
u ∈ Θ∗ such that:

– C ∈ u,
– for every ∃r.D ∈ con(T ), if D ∈ u then ∃r.D ∈ t.

Further, we define the interpretation I = (∆I , ·I) as follows:

– ∆I := Θ∗,
– t ∈ AI iff A ∈ St, for every t ∈ Θ∗ and A ∈ NC ,
– (t, u) ∈ rI iff for every ∃r.C ∈ con(T ), if C ∈ u then ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is admissible. q

A, ∃r.∃r.A

A, ∃r.A

∃r.A

A

A, ∃r.∃r.A, ∃r.A

r
r

r

rr

r

r
r

r

r

r

r

r

r

rr

Fig. 4. A finite learning set for an ELlhs TBox {∃r.∃r.A v A}. The figure includes type
contents (in grey), as defined in the proof of Theorem 3.

5 Learning Algorithms

In this section, we devise two learning algorithms for admissible TIPs with fi-
nite learning sets that correctly identify 1) ELlhs and ELrhs TBoxes using an
equivalence oracle, and 2) ELrhs TBoxes without such an oracle, i.e., in a fully
unsupervised manner.

Since the set T 6|= = {C v D in L | T 6|= C v D} can be in general infinite,
our starting observation is that a learner cannot effectively eliminate concept
inclusions from T 6|= using a straightforward enumeration, thus arriving at the
target TBox T . The only feasible strategy is to try to identify the “good” can-
didate axioms to be included in T , and possibly apply the elimination strategy
only to finitely many incorrect guesses. One generic procedure to employ such
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Algorithm 1 Learning ELrhs/ELlhs TBoxes on finite inputs.

Input: a TIP (T ,S)
Output: a hypothesis TBox H
1: n := 2
2: Hn := ∅
3: while ‘Hn ≡ T ’? is ‘NO’ (equivalence oracle querying) do
4: n := n+ 1
5: Candn := {C v D ∈ ELrhs/ELlhs | `(C v D) = n}
6: Acceptn := {C v D ∈ Candn | S |= C v D}
7: Hn := Hn−1 ∪ Acceptn
8: end while
9: return Hn

heuristic, which we define as Algorithm 1, attempts to construct the hypothesis
by extending it with consecutive axioms of systematically growing size that are
satisfied by the learning set. There, by `(C v D) we denote the size of the axiom
C v D measured in the total number of symbols used for expressing this axiom.
At each step the algorithm makes use of a simple equivalence oracle, which in-
forms whether the currently considered hypothesis is already equivalent to the
learning target (in that case the identification succeeds) or whether some axioms
are still missing. Theorem 4 demonstrates the correctness of this approach.

Theorem 4 (Correct identification in ELrhs/ELlhs). Let (T ,S) be an ad-
missible TIP for T in ELrhs/ELlhs. Then the hypothesis TBox H generated by
Algorithm 1 is equivalent to T .

Obviously the use of the oracle is essential to warrant termination of the
algorithm. It is not difficult to see that without it, the algorithm must still
converge on the correct TBox for some n ∈ N, and consequently settle on it, i.e.,
Hm ≡ Hn for everym ≥ n. However, at no point of time can it guarantee that the
convergence has been already achieved, and so it can only warrant learnability
in the limit. This result is therefore not entirely satisfactory considering we aim
at finite learnability from data in the unsupervised setting.

A major positive result, on the contrary, can be delivered for the case of
ELrhs, for which we devise an effective learning algorithm making no reference
to any oracle. It turns out that in ELrhs the “good” candidate axioms can be
directly extracted from the learning set, thus granting a proper unsupervised
learning method. The essential insight is provided by Lemma 1, presented in
the previous section. Given any Lu concept C such that S(C) 6= ∅ we are able
to identify a tree-shaped minimal model of C w.r.t. T . Effectively, it suffices
to retrieve only the initial part of this model, discarding its infinitely recurrent
(cyclic) subtrees. Such an initial model Iinit is constructed by Algorithm 2. The
algorithm performs simultaneous unravelling of all models in S(C), while on
the way, computing intersections of visited combinations of individuals, which
are subsequently added to the model under construction. Whenever the same
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Algorithm 2 Computing the initial part of the minimal model
⋂
S(C)

Input: the set S(C) = {(Ii, di)}0≤i≤n, for some n ∈ N
Output: a finite tree-shaped interpretation (J , d), where J = (∆J , ·J )
1: ∆J := {f(d0, . . . , dn)}, for a “fresh” function symbol f
2: AJ := ∅, for every A ∈ NC
3: rJ := ∅, for every r ∈ NR
4: for every f(d0, . . . , dn) ∈ ∆J , (e0, . . . , en) ∈ ∆I0 × . . .×∆In , r ∈ NR do
5: if (di, ei) ∈ rIi for every 0 ≤ i ≤ n and there exists no function symbol g

such that g(e0, . . . , en) is an ancestor of f(d0, . . . , dn) in J then
6: ∆J := ∆J ∪ {g(e0, . . . , en)}, for a “fresh” function symbol g
7: rJ := rJ ∪ {(f(d0, . . . , dn), g(e0, . . . , en))}
8: end if
9: end for

10: for every f(d0, . . . , dn) ∈ ∆J , A ∈ NC do
11: if di ∈ AIi for every 0 ≤ i ≤ n then
12: AJ := AJ ∪ {f(d0, . . . , dn)}
13: end if
14: end for
15: return (J , f(d0, . . . , dn)), where f(d0, . . . , dn) is the root of J , created at

step 1.

combination of individuals is about to be visited for the third time on the same
branch it is skipped, as the cycle is evidently detected and further unravelling
is unnecessary. The covering concept CIinit for the resulting interpretation Iinit
is then included in the hypothesis within the axiom C v CIinit . Meanwhile, all
Lu concepts C such that S(C) = ∅ are ensured to entail every EL concept, as
implied by the admissibility condition. The contents of the hypothesis TBox are
formally specified in Definition 5.

Definition 5 (ELrhs hypothesis TBox). Let (T ,S) be an admissible TIP for
T in ELrhs over the vocabulary ΣT . The hypothesis TBox H is the set consisting
of all the following axioms:

– C v CIinit for every Lu concept C such that S(C) 6= ∅, where CIinit is the
covering concept for the interpretation (Iinit, d) generated by Algorithm 2 on
S(C);

– C v
d
r∈NR

∃r.
d
NC for every Lu concept C such that S(C) = ∅.

To better illustrate the learning procedure, we consider a simple TIP con-
sisting of an ELrhs TBox T = {A v ∃r.(A u B)} and a finite learning set
S = {I}, with I as depicted in Figure 5. The assumed vocabulary containing
two concept names — A and B — induces four distinct Lu concepts, namely:
>, A, B and A u B. For every such concept C we identify the corresponding
set of its all pointed models S(C) contained in the learning set. For instance,
S(A) = {(I, e2), (I, e3)}. Further, we use Algorithm 2 to compute the initial
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A A, B

B
e1

r

r
e2 e3

e4

Fig. 5. A finite learning set for an ELrhs TBox {A v ∃r.(A uB)}.

part of the minimal model
⋂
S(C), as illustrated in Figure 6. Finally, based on

these models we formulate the hypothesis TBox, as specified in Definition 5:
H = {> v >, A v ∃r.(A u B u ∃r.(A u B)), B v B,A u B v ∃r.(A u B)}. It is
not difficult to verify that H ≡ T .

A, B

Bf1(e2, e3)

f3(e3, e3)

f2(e3, e3)

r

r

A

A, B

A, B

r

A, B

f1(e3)

f2( e3)

I II III IV

f1(e1, e2, e3, e4) f1(e3, e4)

Fig. 6. The initial parts of the minimal models
⋂

S(C) computed with Algorithm 2
over the learning set in Figure 5, where (I) C = >, (II) C = A, (III) C = B, (IV)
C = A uB.

The correctness of the learning procedure is demonstrated in the following
theorem.

Theorem 5 (Correct identification in ELrhs). Let (T ,S) be an admissible
TIP for T in ELrhs. Then the hypothesis TBox H for S is equivalent to T .

Proof sketch. Let C be a concept in Lu such that S(C) 6= ∅. By Lemma 1, the
intersection (J , d) =

⋂
S(C) is a minimal model of C w.r.t. T . Without loss

of generality, we assume that (J , d) is a tree-shaped model. We also note, that
every EL concept C induces a syntactic tree, which corresponds directly to a
minimal model of C. It is not difficult to see that Algorithm 2 indeed produces
an initial part (Jinit, d) of (J , d). By reconstructing the concept Cinit from we in
fact identify all minimal (i.e., necessary) consequences of C w.r.t. T . However,
certain infinite subtrees of (J , d) are omitted in (Jinit, d). This happens due to
the condition at step 5 of Algorithm 2, which terminates the construction of
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certain branches whenever a cycle is detected. In the rest of the proof, we show
that the covering concept CJinit

has the same minimal model w.r.t. H as C has
w.r.t. T . Since this is demonstrated to hold for every Lu concept C, we can
conclude that H ≡ T . q

The learning algorithm runs in double exponential time in the worst case and
generates TBoxes of double exponential size in the size of S. This follows from
the fact that the tree-shaped interpretations generated by Algorithm 2 might
be of depth exponential in the number of individuals occurring in S and have
exponential branching factor. Importantly, however, there might exist solutions
far closer to being optimal which we have not as far investigated.

It is our strong conjecture, which we leave as an open problem, that a similar
learning strategy should also be applicable in the context of ELlhs.

6 Related Work

Ontology learning is an interdisciplinary research field drawing on techniques
from Formal Concept Analysis [13,14], Natural Language Processing [15,16] and
machine learning [6,17,16], to name a few. One classification of ontology learn-
ing techniques distinguishes between investigations of exact learnability, and ap-
proaches incorporating probabilistic, vague or fuzzy reasoning [18,19]. Another
classification is at the level at which learning takes place [15] — does the prob-
lem address learning of concepts, concept hierarchies, logical theories or rules?
Lehmann and Völker [17] distinguishes between four types of ontology learning:
learning from text, data mining, concept learning and crowdsourcing.

In this landscape, the present paper is on exact learnability and, within
this framework, addresses the problem of learning logical theories. That is, we
address the problem at the level of relationships between concepts, positing a
logical theory, rather than at the concept level, learning concept descriptions
[20,21,22,23,24]. Furthermore, the target theory is identified from interpreta-
tions, and is hence related to various contributions on learnability of different
types of formal structures from data, e.g.: first-order theories from facts [10],
finite automata descriptions from observations [25], and logic programs from
interpretations [5,6].

The model for exact learning of DL TBoxes which offers the most direct
comparison to ours was introduced recently by Konev, et al. [8], and follows on
prior research by the same authors based on Angluin’s model of learning from
entailment [7,26]. In their learning framework for learning from data retrieval
queries, the learner identifies the TBox by posing two types of queries to an ora-
cle: membership queries of the form “(T ,A) |= q?”, where A is a given ABox and
q is a query, and equivalence queries of the form “Does the hypothesis ontology
H entail the target ontology T ?”. The authors study polynomial learnability in
fragments of EL and DL-Lite, and for queries ranging from atomic to conjunctive
queries.

Essentially, given a finite learning set in an admissible TIP, a learner from
interpretations can autonomously answer arbitrary membership queries, thus ef-
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fectively simulating the membership oracle. However, it does not have by default
access to an equivalence oracle. Once such an oracle is included, as in Algo-
rithm 1, the learning power of both learners becomes comparable for the lan-
guages investigated in the present paper. In this sense, our Theorem 4 should be
also indirectly derivable from the results by Konev et al. However, our stronger
result for ELrhs in Theorem 5 demonstrates that, at least in some cases, the
learner from interpretations is able to succeed without employing any oracle.
While learning from ABoxes and query answers makes sense in a semi-automated
learning environment, learning from interpretations is in our view a more appro-
priate model in the context of fully autonomous learning.

7 Conclusions and Outlook

In this paper, we have delivered initial results on finite learnability of DL TBoxes
from interpretations. We believe that this direction shows promise in establishing
formal foundations for the task of ontology learning from data. Some immediate
problems that are left open with this work concern finite learnability of ELlhs

TBoxes in an unsupervised setting, and possibly of other lightweight fragments
of DLs. Another set of very interesting research questions should deal, in our
view, with the possibility of formulating alternative conditions on the learning
sets and the corresponding learnability guarantees they would imply in different
DL languages. In particular, some limited use of closed-world operator over the
learning sets might allow to relax the practically restrictive admissibility condi-
tion. Finally, the development of practical learning algorithms, possibly building
on existing inductive logic programming methods, is an obvious area to welcome
further research efforts.

References

1. Maedche, A., Staab, S.: Ontology learning. In Staab, S., Studer, R., eds.: Handbook
on Ontologies, Springer (2004) 173–189

2. Hoekstra, R.: The knowledge reengineering bottleneck. Journal of Semantic Web
1(1,2) (2010) 111–115

3. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press (2003)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI-05.
(2005)
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Appendix

Proof of Lemma 1.

Suppose on the contrary that
⋂
S(C) = (J , d) is not a minimal model of C

w.r.t. T , but instead some other (I, d) is. In such case (I, d) 7→ (J , d), but the
inverse does not hold. Let further D be a concept such that d ∈ DJ but d 6∈ DI .
Clearly, such concept can always be created by ensuring that D expresses (part
of) the difference between (J , d) and (I, d). By definition of

⋂
S(C), it follows

that d ∈ DIi , for every Ii ∈ S and d ∈ CIi . Consequently, we observe that
T 6|= C v D, but a counterexample to C v D does not exist in S. But this
would imply that (T ,S) is not admissible, which contradicts the assumption. q

Proof of Theorem 1.

Consider a trivial TBox {∃r.> v ∃r.>} and a concept template Cn = ∃r. . . . ∃r.>,
where for n ∈ N the depth of Cn equals n. It is easy to verify that S(C) 6= ∅
(since, e.g., T 6|= Cn v Cn+1). Then, by Lemma 1,

⋂
S(Cn) = (I, d) must be

a minimal pointed model of Cn w.r.t. T , where T is in fact negligible due to
its trivial form. It is easy to observe that (I, d) must consist of exactly n + 1
distinct individuals connected in a single acyclic path of r-successors. Since there
are infinitely many distinct concepts of the form Cn, it follows by induction that
S must contain infinitely many distinct pointed models. q

Proof of Theorem 2.

Let I = (∆I , ·I) be an interpretation as defined in the proof sketch of Theorem 2
in Section 4. We claim that:

1. I |= T .

2. I 6|= C v D, for every C v D ∈ T 6|=.

Claim 1. Follows immediately by construction of I. For an arbitrary axiom
C v D ∈ T and an individual t ∈ ∆I , we show that whenever t ∈ CI then
t ∈ DI . Suppose that indeed t ∈ CI . Since C =

d
iAi, for Ai ∈ NC , therefore

t ∈ AIi , for every Ai, and so Ai ∈ t. Consequently, C ∈ t follows by the definition
of a type. But then it must be the case that D ∈ t, as Θ consists only of saturated
types. Further, every conjunct of D must be in t, by the definition of type. Among
these, for every atom A ∈ t, we have that t ∈ AI , while for every existential
restriction ∃r.B ∈ t, there must exist another type t{B}, such that (t, t{B}) ∈ rI
and B ∈ t{B}. By structural induction over B and the construction of I it follows
that indeed t ∈ DI .
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Claim 2. First we observe that, for arbitrary concepts C,D, if t{C} ∈ DI , then
it must be the case that T |= C v D. This follows from two basic observations.
Firstly, t{C} contains only those concepts A ∈ NC such that T |= C v A.
Secondly, I is constructed as a minimal model, in the sense that it includes only
necessary successors, i.e., those entailed by respective existential restrictions,
with minimal interpretations necessary to satisfy these restrictions. Further, we
note that by construction of I, for an arbitrary axiom C v D ∈ T 6|= there exists
an individual t ∈ ∆I , such that t ∈ CI . Clearly, since C =

d
iAi or C = >,

therefore t{C} ∈ Θ by the construction of Θ. We can therefore conclude that if
t{C} ∈ DI then it would have to be the case that T |= C v D, which contradicts
the assumption. q

Proof of Theorem 3.

Let I = (∆I , ·I) be an interpretation as defined in the proof sketch of Theorem 3
in Section 4. We claim that:

1. I |= T .
2. I 6|= C v D, for every C v D ∈ T 6|=.

Claim 1. For an arbitrary C v D ∈ T and t ∈ Θ∗, suppose that t ∈ CI . Let
JC = (J , w) be a minimal tree-shaped model of C. Clearly, (J , w) 7→ (I, t)
via some mapping h. Consider any leaf individual d in JC , of depth greater
than 0, and any concept A ∈ NC , such that d ∈ AJC . Clearly, the existence of
this individual and its given interpretation must be justifiable by the fact that
some subconcept ∃r.B of C is satisfied in an r-predecessor of d in JC . But then,
by construction of Θ∗ and I, it must be the case that ∃r.B ∈ h(d), or else h(d)
would have been eliminated from Θ. By the bottom-up structural induction over
the tree JC and the syntax of C it follows that C ∈ t. But since t is saturated,
therefore also D ∈ t. Consequently, by definition of types and construction of I,
since D =

d
iAi (or D = >), then for every conjunct Ai, it must be the case

that t ∈ AIi (t ∈ >I follows trivially).

Claim 2. For an arbitrary axiom C v D ∈ T 6|=, we show that there exists d ∈ ∆I ,
such that d ∈ CI and d 6∈ DI . Let J TC = (J , w) be a minimal model of C w.r.t.

T . It is easy to see that w ∈ DJ TC iff T |= C v D, and therefore w 6∈ DJ TC .
Further, we fix a mapping h from individuals in J TC to corresponding types, such

that h(d) = {A ∈ NC | d ∈ AJ
T
C } ∪ {C uD ∈ con(T ) | C,D ∈ h(d)} ∪ {∃r.C ∈

con(T ) | C ∈ h(e), (d, e) ∈ rJ TC }. It is not difficult to see that all such types
are saturated and belong to Θ∗. But this means that by the construction of I,
there must exist an individual d ∈ ∆I , such that (J TC , w) 7→ (I, d), and so that
d ∈ CI and d 6∈ DI . q

Proof of Theorem 4.

Follows immediately. Clearly, whenever the oracle responds ‘YES’ the hypothesis
TBoxH is equivalent to T . It therefore suffices to show that the algorithm always
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terminates in finite time. Let k be the size of the largest axiom in T . Whenever
the counter n reaches k+ 1, the algorithm must have already listed and verified
all the (finitely many) axioms of the size smaller or equal to k+1 — in particular,
all the axioms in T . As the algorithm accepts only axioms that are satisfied in
S, i.e., entailed by T , it means that at this stage the oracle must accept the
TBox as it contains all and only the axioms from T and possibly their logical
consequences. q

Proof of Theorem 5.

We start by noting that every EL concept C induces a syntactic tree, which
corresponds to a minimal model of C. Observe, that C can always be equivalently
represented as a concept C = > u

d
iAi u

d
j ∃rj .Cj , where for every i, j ≥ 0,

it holds that Ai ∈ NC , rj ∈ NR and Cj is a possibly complex EL concept. We
say that C maps to a node w ∈ W of a labeled tree (W,<, l) iff the following
conditions are satisfied:

– l(w) = {Ai}i
– for every j there exists wj ∈W such that:
• (w,wj) ∈<,
• l(w,wj) = rj ,
• Cj maps to wj .

The syntactic tree of an EL concept C is the smallest tree CT = (W,<, l) such
that C maps to its root. By the semantics of EL, it follows that CT can be
essentially viewed as a tree-shaped model IC = (I, w) of C, as it is possible to
straightforwardly turn it into one as follows:

– ∆I = W , where w ∈W is the root of CT
– w ∈ AI iff A ∈ l(w), for every w ∈ ∆I and A ∈ NC ,
– (w, v) ∈ rI iff (w, v) ∈< and l(w, v) = r, for every w, v ∈ ∆I and r ∈ NR.

In fact, it is easy to see that IC is a minimal model of C.
Let (T ,S) be an admissible TIP with T in ELrhs. Let C be a concept in Lu

such that S(C) 6= ∅. By Lemma 1, the intersection (J , d) =
⋂
S(C) is a minimal

model of C w.r.t. T . Without loss of generality, we assume that (J , d) is a tree-
shaped model. It is not difficult to see that Algorithm 2 indeed produces an initial
part (Jinit, d) of (J , d). However, certain infinite subtrees of (J , d) are omitted
in (Jinit, d). This happens due to the condition at step 5 of Algorithm 2, which
terminates the construction of certain branches whenever a cycle is detected. In
the following, we show that the covering concept CJinit

has the same minimal
model w.r.t. H as C has w.r.t. T . Since, as will be demonstrated, this holds for
every Lu concept C, we can conclude that H ≡ T .

First, we split the TBox T into the propositional and the relational compo-
nents: TP and TR, respectively. The set TP consists of axioms C v CP , where
C ∈ Lu and CP =

d
S for S ⊆ NC being the set of all atoms A ∈ NC , such

that T |= C v A. Whenever S = ∅ we set CP = >. For a Lu concept C let
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C∃ be the set of all subconcepts of the form ∃r.Ej occurring at depth 0 in some
axiom D v E ∈ T such that TP |= C v D. We define TR as the set of all
axioms C v CR, for every C ∈ Lu, where CR =

d
C∃. Whenever C∃ = ∅ we set

CR = >. Clearly, TP and TR can be simply defined by looking up through the
structure of the axioms’ left-hand-side and right-hand-side. It is also easy to see
that T ≡ TP ∪ TR. Finally, we observe that for every C ∈ Lu there exist unique
axioms C v CP ∈ TP and C v CR ∈ TR. We say that CP and CR are the TP -
and TR-consequents of C, respectively.

For a Lu concept C, the T -saturation of C is a concept CT obtained by
iteratively replacing every (maximal) Lu subconcept C ′ of C with the concept
D u E, where D is the TP -consequent of C ′ and E is the TR-consequent of D.
Naturally, CT can be effectively an infinite concept. By the construction of CT ,
and properties of TP and TR, it follows immediately that the interpretation ICT
corresponding to the syntactic tree of CT is the minimal tree-shaped model of C
w.r.t. T . This also holds for any concept CT

′
obtained from CT by replacing its

any subconcept ∃r.C1 u ∃r.C2 with ∃r.C1 whenever ∅ |= C1 v C2. Hence there

must exist some CT
′

such that (ICT ′ , d) = (J , d). Without loss of generality,
we assume that it is in fact (ICT , d) = (J , d) and consider further the concept
CT as the covering concept for (J , d).

Consider any node t in the syntactic tree CTT . By Dt we denote the concept
corresponding to the subtree of CTT rooted at t. Clearly, Dt = > u

d
iAi ud

j ∃rj .Cj , for some atoms Ai ∈ NC , roles rj ∈ NR and (possibly) complex

concepts Cj . Let t′ be the r-predecessor of t in CTT , for some r ∈ NR. Then Dt′

must contain ∃r.Dt as one of its subconcepts at the depth 0. Consider further
some cycle occurring in (J , d), i.e., let e and e′ be two individuals in (J , d) such
that (J , e) = (J , e′) and e′ is a (possibly indirect) successor of e. In that case
there must exist the corresponding nodes t, t′ in CTT , such that Dt = Dt′ and t′

is a (possibly indirect) successor of t. Let τ = t1, . . . , tn, for some n ≥ 1 be the
path connecting t with t′ in CTT , where t1 = t and tn = t′, and l(ti, ti+1) = ri for
some ri ∈ NR, for every 1 ≤ i ≤ n− 1. We can observe that Dtn−1

must contain
the concept ∃rn−1.Dt′ at the depth 0. Observe that CJinit

covers the part of J
containing all nodes from τ except for tn (and analogically on other branches
at which recurrent subtrees are rooted). However, since concept Dtn−1 can be
clearly derived at the depth of tn−1 while constructing the T -saturation of C,
it follows that the T -saturation of CJinit

must be equal to CT w.r.t. T , modulo
removal of some possibly duplicate branches. Now we need to show, that this will
be also the case when T is replaced with H. This follows naturally by induction.
For CJinit

= >u
d
iAiu

d
j ∃rj .Cj we fix T ′R = (TR\{C v E})∪{C v

d
j ∃rj .Cj}.

Note that the propositional consequent of C remains unchanged in H since CJinit

is always of depth at least one. Then the construction of the (TP ∪T ′R)-saturation
of C will progress via exactly the same steps as the T -saturation of C, modulo
application of the axiom C v

d
j ∃rj .Cj instead of C v E. Effectively, at every

occurrence of the concept C in the construction of the (TP ∪ T ′R)-saturation of
C we attach the syntactic tree of CJinit

, which is exactly as CT down to the
occurrence of cyclic subtrees. But then by repeating the inductive argument,
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we observe that ultimately this construction must lead to a tree equal to CT .
Since the minimal model of C remains the same w.r.t. (TP ∪T ′R), we can proceed
analogically with every Lu concept C and its corresponding axiom C v E ∈ T ′R,
thus iteratively replacing the content of TP ∪ TR with H.

We can therefore conclude that for every Lu concept C, such that S(C) 6= ∅,
we always obtain the same minimal model of C w.r.t. H as w.r.t. T , provided
the same property holds whenever S(C) = ∅. Let us then finally consider a
case of Lu concept C such that S(C) = ∅. By admissibility of S this implies
that C v D, for every EL concept D expressible in the given vocabulary. In
such case our learning algorithm includes the axiom C v

d
r∈NR

∃r.
d
NC in

H. We can observe, however, that in this situation it must be also the case
that T |=

d
NC v

d
r∈NR

∃r.
d
NC . Suppose the latter is not the case. This

would mean that S(
d
NC) 6= ∅. But this would also imply that S(C) 6= ∅, which

contradicts the assumption. q
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