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Abstract. SQL:2011, the most recently adopted version of the SQL
query language, has unprecedentedly standardized the representation of
temporal data in relational databases. Following the successful paradigm
of ontology-based data access, we develop a practical approach to query-
ing the SQL:2011-based temporal data model via the semantic layer of
OWL 2 QL. The interval-based temporal query language (TQL), which
we propose for this task, is based on naturally characterizable combina-
tions of temporal logic with conjunctive queries. As the central contribu-
tion, we present rules for sound and complete rewriting of TQL queries
into two-sorted first-order logic, and consequently, into corresponding
SQL queries, which can be evaluated in any existing relational database
management system compliant with the SQL:2011 temporal data model.
Importantly, the proposed rewriting is based on the direct reuse of the
standard rewriting techniques for conjunctive queries under OWL 2 QL.
This renders our approach modular and easily implementable. As a no-
table corollary, we show that the data complexity of TQL query answer-
ing remains in AC0, i.e., as in the usual, non-temporal case.

1 Introduction

The ability to manage the temporal aspects of information is critical for a variety
of applications. One natural and prevailing scenario is that of representing and
querying the validity time of data, i.e., the time during which data is deemed
true about the application domain. The significance of this task is particularly
visible in the area of semantic technologies, where the systematically growing
number of proposed solutions, building on different levels of the Semantic Web
architecture and differing in the flavour and depth of temporal reasoning they
support, aim at addressing essentially the same problem [15,14,5,21,7,2]. A very
similar proliferation of proposals was witnessed in the 1990s in the field of tempo-
ral databases. Intensive attempts to extend the traditional relational data model
and SQL with temporal features inspired then a large body of candidate spec-
ifications, including such extensions as TSQL2, SQL3 or SQL/Temporal [23],
which eventually failed to be adopted by the database community due to the
persistent lack of consensus as to the preferred approach. Only very recently,
that discussion has been picked up again and a compromise temporal extension
has eventually found its way into SQL:2011 [19] — the newest standardization

1



of the SQL query language. This unprecedented circumstance offers an inter-
esting opportunity to address the problem of reasoning with temporal semantic
data from yet another angle, namely, by relating it via known links between
relational databases and semantic technologies to its analogue in the database
world, thus using the SQL:2011 standard as a leverage for the solution. In this
paper, we contribute precisely to this research agenda by proposing a novel,
temporal extension to the framework of ontology-based data access.

Ontology-based data access (OBDA) is a popular paradigm of managing in-
formation, which combines the data storage and querying capabilities offered
by relational database management systems (RDBMSs) with the semantically
enhanced view on the data provided by ontologies. The ontology language OWL
2 QL, based on the DL-Lite family of Description Logics, is a profile OWL 2
designed specifically to support optimally balanced OBDA. In a nutshell, con-
junctive queries, posed over data under an OWL 2 QL ontology, can be rewritten
into first-order logic using the ontology’s axioms, then translated to SQL and
answered within an RDBMS, in such a way as if the ontology was mediating
in the process [8]. As large portions of data available through the Web are in
fact still hosted in relational datastores, OBDA provides a crucial channel for
accessing this data from the level of the Semantic Web applications.

In this work, we establish an analogical OBDA interface between the seman-
tic layer of OWL 2 QL and temporal data model endorsed by SQL:2011. The
interval-based temporal query language (TQL), which we propose for this task,
is based on naturally characterizable combinations of temporal logic with con-
junctive queries, identified in [16]. TQL is tailored specifically to offer maximum
expressivity while preserving the possibility of reuse central to OBDA first-order
rewriting techniques and tools, developed specifically for the use with OWL
2 QL. While this technical compliance warrants the minimal implementation
overhead for our approach, its well-defined logic foundations allow us to identify
basic formal properties of TQL. In particular, we are able to demonstrate that
under the finite time domain assumption the data complexity of query entail-
ment remains in AC0, i.e., as in the case of standard (non-temporal) conjunctive
queries, even though the combined complexity increases to PSpace-complete.
As the main contribution, we develop a rewriting of TQL queries in the presence
of OWL 2 QL ontologies into two-sorted first-order logic, and consequently to
SQL, which opens the way to efficient query answering by means of existing,
commercially supported RDBMSs, such as IBM DB2 10.1, Oracle Database 11g
Workspace Manager, or Teradata — all of which have by now adopted certain
variants of the SQL:2011 standard1.

The paper is organized as follows. In the next section we lay down the prelim-
inaries. In Section 3, we introduce TQL and define the query entailment problem.
In Section 4, we present the TQL query rewriting rules and, in Section 5, we
study the formal properties of query answering queries via this rewriting. The
related work is discussed in Section 6 and the paper is concluded in Section 7.
Some proofs are included in the appendix.

1 See http://www.cs.arizona.edu/~rts/sql3.html for an overview.
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2 Basic Notions

We start by recapping the logic foundations of OBDA. Then we motivate and
formally introduce the temporal extension of OBDA studied in this paper.

2.1 Ontology-Based Data Access

OWL 2 QL is a profile of OWL 2 based on the DL-Lite family of Description
Logics (DLs) [8]. A DL vocabulary Σ = (NI,NC,NR) consists of countably infinite
sets of individual names (NI), concept names (NC) and role names (NR). An ABox
A is a finite set of assertions of type A(a) and r(a, b), for a, b ∈ NI, A ∈ NC and
r ∈ NR, which we also generically denote with α(a). A TBox T is a finite set
of concept inclusions B v C and role inclusions r v s, where B,C and r, s are
possibly complex concepts and roles, respectively, built using logical constructors
allowed in OWL 2 QL, such as ∃r.>, A u B, r−, whose particulars are not of
importance for this work.2 The semantics is given in terms of DL interpretations
I = (∆I , ·I), defined as usual [4]. An interpretation I is a model of T and A,
denoted as I |= T ,A, iff it satisfies every axiom in T and A.

In OBDA, the instance data, represented as an ABox, is accessed via an
ontology, given as a TBox, using a designated query language such as, most
commonly considered in that context, the language of conjunctive queries [13].
Let NV be a countably infinite set of variables. A conjunctive query (CQ) over a
DL vocabulary Σ is a first-order formula:

q(y) = ∃x.(
∧

1≤j≤n
αj(dj))

where y and x are sequences of, respectively, free and existentially bounded
variables occurring in q(y) and every atom αj(dj) is of the form A(d) or r(d1, d2),
where A ∈ NC, r ∈ NR, and d, d1, d2 ∈ NI ∪NV. Whenever it is not confusing, we
sometimes also abbreviate q(y) to q. By term(q) we denote the set of all terms
occurring in q and by obj(q) the set of all free variables. We call q grounded
whenever obj(q) = ∅. A grounded CQ q is satisfied in I iff there exists a mapping
µ : term(q) 7→ ∆I , with µ(d) = dI for every d ∈ NI, such that µ(d) ∈ AI and
(µ(d1), µ(d2)) ∈ rI for every A(d) and r(d1, d2) in q. Further, we say that q
is entailed by T ,A, denoted as T ,A |= q iff q is satisfied in every model of
T ,A. Whenever ∅,A |= q we also write A |= q. An answer to q is a mapping
σ : obj(q) 7→ NI. By σ(q) we denote the result of uniformly substituting every
occurrence of x in q with σ(x), for every x ∈ obj(q). An answer σ is called certain
over T , A iff σ(q) is entailed by T ,A.

A prominent property of CQs is their first-order (FO) rewritability in OWL
2 QL, formally defined as follows.

Definition 1 (FO rewritability [8]). For every CQ q and a TBox T , there
exists a FO formula qT , called the FO rewriting of q in T , such that for every
ABox A and answer σ to q, it holds that:
2 See http://www.w3.org/TR/owl2-profiles/#OWL_2_QL for full details.
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T , A |= σ(q) iff db(A) 
 σ(qT ),

where 
 is the FO satisfaction relation and db(A) denotes A considered as a
database/FO interpretation, i.e., a structure (NI, ·D), where NI is the data do-
main and ·D is an interpretation function defined as αD = {a | α(a) ∈ A}, for
every α ∈ NC ∪ NR.

By the standard techniques the FO rewriting of q in T is a union of con-
junctive queries, i.e., a formula qT (y) =

∨
1≤i≤m

qi(y), where every qi(y) is a CQ.

FO rewritability is particularly significant from the practical perspective. It im-
plies that answering CQs in OWL 2 QL can be effectively performed in existing
RDBMSs via a translation to SQL, as the ontological component in the task
can be always compiled out in the query rewritting, without loss of soundness or
completeness. As a theoretical corollary, it follows also that the data complexity
of query answering in this setup is AC0, as in first-order logic (FOL).

In this work, we focus exclusively on OWL 2 QL TBoxes, even though some of
the presented results should clearly transfer to other fragments of DLs warranting
the FO rewritability property for CQs. Without always stating it explicitly, we
assume that every TBox or ontology mentioned in the remainder of this paper
is expressed in OWL 2 QL.

2.2 Ontology-Based Access to Temporal Data

In this paper, we study ontology-based access to temporal data, in the sense of
an extension to the OBDA paradigm whose prototypical application could be
illustrated with the following scenario.

Consider a temporal database (TDB) presented in Table 1, with columns
from and to marking the limits of the validity periods of the respective records.
Such databases can be naturally mapped to (virtual) temporal ABoxes, such as
given in Table 2. Our goal is to define a dedicated language for querying tem-
poral ABoxes, which would combine support for two essential functionalities:
representation of temporal constraints over the validity periods of data and se-
mantically enhanced access to that data via ontologies. For instance, given the
ontology T = {Emp v Person, department v worksAt , location v basedIn}, the
language should be able to support queries such as:

(Q) Find all persons X and times Y , such that X worked in a department
based in Barcelona during Y and in a department based in Madrid some
time earlier.

The expected set of answers should then include e1 as X with the associated
period [1999, 2000] as Y . The practical rationale behind ontology-based access
to temporal data defined in this way is to eventually enable such queries to be
translated to SQL and answered within existing RDBMSs.

Formally, the temporal data model under consideration is grounded in the
point- and (derived) interval-based time domains.
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Emp

id name department from to

e1 john d1 1998 2000
e1 john d3 2000 2003
e2 mark d2 1999 2002

Dep

id type location from to

d1 financial madrid 1998 1999
d1 financial barcelona 1999 2003
d2 hr barcelona 2000 2003
d3 hq london 2000 2003

Table 1. SQL:2011 temporal database.

[1998, 2000] : Emp(e1 )
[1998, 2000] : name(e1 , john)

[1998, 2000] : department(e1 , d1 )
. . .

[1998, 1999] : Dep(d1 )
[1998, 1999] : type(d1 ,financial)

[1998, 1999] : location(d1 ,madrid)
. . .

Table 2. Temporal ABoxes corresponding to the temporal relations in Table 1.

Definition 2 (Time domain, time intervals). A time domain is a tuple
T = (T,<), where T is a nonempty set of elements called time points and < is
an irreflexive, linear ordering on T . A time interval τ = [τ−, τ+] over T is a set
of time points {t ∈ T | τ− ≤ t ≤ τ+}, where τ−, τ+ ∈ T , such that τ− ≤ τ+.
The points τ− and τ+ are called the beginning and the end of τ .3 The set of all
time intervals over T is denoted by I.

In the SQL:2011 standard, every temporal relation extends a non-temporal
one with two additional attributes storing the beginning and the end time of the
validity period of a given tuple [19] — exactly as in the example from Table 1.
Such a model supports a representation of so-called concrete TDBs, i.e., finite
syntactic encodings of temporal data. The actual meaning of these encodings is
captured by possibly infinite abstract TDBs [12]. In the OBDA setting these two
notions translate naturally into the corresponding types of ABoxes.

Definition 3 (Concrete and abstract temporal ABoxes). A temporal as-
sertion is an expression τ : α(a), where α(a) is an ABox assertion and τ ∈ I,
stating that α(a) is valid in every time point in τ . A concrete temporal ABox
(CTA) A is a finite set of temporal assertions. For a concrete temporal ABox A
there exists a corresponding abstract temporal ABox (ATA), obtained by means
of a mapping ‖ · ‖, such that ‖A‖ = (At)t∈T , where At = {α(a) | τ : α(a) ∈
A and t ∈ τ}.

The link between concrete temporal ABoxes and SQL:2011 TDBs is defined
in a strict analogy to the non-temporal OBDA.

3 Note that SQL:2011 adopts a closed-open semantics for the validity periods, i.e., for
any τ ∈ I it holds that τ− ∈ τ and τ+ 6∈ τ . This a technically insignificant difference
which we omit here for clarity of presentation.
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Definition 4 (TDB). Let A be a CTA over the time domain T = (T,<). By
tdb(A) we denote A considered as a temporal database (TDB) over the signature
Γ = {Rα | α ∈ NC ∪ NR}, i.e., the structure (NI, T,<, ·D), where NI is the
data domain, (T,<) is the time domain, and ·D is the interpretation defined as
RDα = {(a, τ−, τ+) | τ : α(a) ∈ A}, for every α ∈ NC ∪ NR.

3 Temporal Query Language

The Temporal Query Language (TQL), presented in this section, is defined using
a generic construction method for temporal query languages in DLs, explored
also in [16,3,7,18]. TQL is a combination of a temporal language with CQs,
obtained by substituting CQs for the atoms in temporal formulas. This design
allows for very flexible interleaving of data queries with temporal constraints,
while benefiting from the expressive power of both components. As the temporal
language we use first-order monadic logic of orders, which is at least as expressive
as most common linear temporal logics [22]. Two specific characteristics of TQL,
which distinguish it from other similar proposals, are:

– the use of an interval-based variant of the temporal language, rather than
a point-based, which enables direct querying of concrete TDBs, without re-
quiring intermediate translations, such as studied in [24];

– the use of the epistemic semantics for embedding CQs in the temporal lan-
guage, as suggested in [16], which renders the language more expressive and
computationally well-behaved, as explained further.

By IV we denote a countably infinite set of variables ranging over I.

Definition 5 (TQL). Temporal query language (TQL) is the smallest set of
formulas induced by the grammar:

ψ ::= [q](u) | u∗ < v∗ | ¬ψ | ψ1 ∧ ψ2 | ∃y.ψ

where q is a CQ, u, v ∈ I ∪ IV, y ∈ IV, and ∗ ∈ {−,+}. An i-substitution is a
mapping π : I ∪ IV 7→ I such that π(τ) = τ , for every τ ∈ I. By obj(ψ) we denote
the set of free individual variables and by int(ψ) the set of free interval variables
in ψ. A TQL formula ψ is grounded iff obj(ψ) = int(ψ) = ∅. The satisfaction
relation for TQL formulas, w.r.t. a TBox T , a CTA A, and an i-substitution π,
is defined inductively as follows:

(†) T ,A, π |= [q](u) iff T ,At |= q, for every t ∈ π(u),
T ,A, π |= u∗ < v∗ iff π(u)∗ < π(v)∗,
T ,A, π |= ¬ψ iff T ,A, π 6|= ψ,
T ,A, π |= ψ1 ∧ ψ2 iff T ,A, π |= ψ1 and T ,A, π |= ψ2,
T ,A, π |= ∃y.ψ iff there exists τ ∈ I, such that

T ,A, π[y 7→ τ ] |= ψ,

where π[y 7→ τ ] denotes the i-substitution exactly as π except for that we fix
π(y) = τ . We say that T ,A entail a grounded TQL formula ψ, denoted as
T ,A |= ψ, iff there exists an i-substitution π, such that T ,A, π |= ψ.
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TQL formulas with free variables can naturally serve as queries over concrete
temporal ABoxes. We refer to such formulas as concrete TQL queries (CTQs).
As an example of a CTQ, consider a rephrasing of the query (Q) from Section 2.2:

ψ(x, y) := [∃z.(Person(x) ∧ worksAt(x, z) ∧ basedIn(z, barcelona))](y) ∧
∃v.(v+ < y− ∧ [∃z.(worksAt(x, z) ∧ basedIn(z,madrid))](v))

As one of its answers, ψ(x, y) should return {x 7→ e1 , y 7→ [1999, 2000]}. The
certain answer semantics for such queries is defined as expected.

Definition 6 (CTQ answering). Let T be a TBox, A a CTA and ψ a CTQ
with free variables obj(ψ) and int(ψ). An answer to ψ is a mapping σ such that
σ : obj(ψ) 7→ NI and σ : int(ψ) 7→ I. By σ(ψ) we denote the result of uniformly
substituting every occurrence of x in ψ with σ(x), for every x ∈ obj(ψ) ∪ int(ψ).
An answer σ is called certain over T , A iff T ,A |= σ(ψ).

The key to the design of TQL is condition (†), in Definition 5, which ensures
the epistemic interpretation of the CQs embedded in TQL queries. The formula
[q](τ), for a grounded CQ q and τ ∈ I, reads as “q is entailed in all time
points in τ”. Analogically, ¬[q](τ) is interpreted as negation-as-failure: “it is
not true that q is entailed in all time points in τ”. This approach of combining
FO-based query languages has been originally proposed by Calvanese et al. [9],
giving rise to a family of lightweight query languages, which permit well-behaved,
modular answering algorithms and support the use of negation (interpreted as
negation-as-failure), which otherwise easily leads to undecidability in the context
of querying DL ontologies.

As a consequence, condition (†) can be effectively replaced with its equiv-
alent, which involves the standard FO rewritability techniques in the sense of
Definition 1:

T ,A, π |= [q](u) iff db(At) 
 qT , for every t ∈ π(u),

where qT is an FO rewriting of q in T . What it eventually means, is that all
occurrences of CQs in a CTQ can be replaced with their FO rewritings, so that
the ontology T can be dropped while the formula can be evaluated exclusively
over the temporal ABox seen as a sequence of FO interpretations. However, such
point-based rewriting strategy, also explored in [7], is highly impractical when
applied over concrete TDBs, as it necessitates either unfolding a concrete TDB
into an abstract one, or a further translation from point-based to an interval-
based language. Instead, here we pursue a direct interval-based approach, which
requires a more sophisticated rewriting technique, capable of handling the well-
known problems of computing temporal joins and coalescing, as explained in
detail in the following section.

4 Query Rewriting

We start by defining a two-sorted first-order language, tailored specifically for
talking about temporal relations of TDBs.
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Definition 7 (2FO). The language of two-sorted first-order logic (2FO) over
the signature Γ = {R1, R2, . . .} is the smallest set of formulas induced by the
grammar:

ϕ ::= R(d1, . . . , dn, t1, t2) | ¬ϕ | ϕ1 ∧ ϕ2 | t1 < t2 | ∃x.ϕ | ∃y.ϕ
where R ∈ Γ , d1, . . . , dn ∈ NI ∪ NV, t1, t2 ∈ T ∪ TV, x ∈ NV and y ∈ TV. A
d-substitution δ is a mapping δ : NI ∪ NV 7→ NI, such that δ(a) = a for every
a ∈ NI. A t-substitution ν is a mapping ν : T ∪ TV 7→ T , such that ν(t) = t
for every t ∈ T . A 2FO formula ϕ is called grounded whenever it does not
have any free variables. The satisfaction relation for 2FO formulas, w.r.t. a
TDB tdb(A) = (NI, T,<, ·D), a d-substitution δ and a t-substitution ν, is defined
inductively as follows:

tdb(A), δ, ν 
 R(d1, . . . , dn, t1, t2) iff (δ(d1), . . . , δ(dn), ν(t1), ν(t2)) ∈ RD,
tdb(A), δ, ν 
 ¬ϕ iff tdb(A), δ, ν 6
 ϕ,
tdb(A), δ, ν 
 ϕ1 ∧ ϕ2 iff tdb(A), δ, ν 
 ϕ1 and tdb(A), δ, ν 
 ϕ2,
tdb(A), δ, ν 
 t1 < t2 iff ν(t1) < ν(t2),
tdb(A), δ, ν 
 ∃x.ϕ iff for x ∈ NV, there exists a ∈ NI such

that tdb(A), δ[x 7→ a], ν 
 ϕ,
tdb(A), δ, ν 
 ∃y.ϕ iff for y ∈ TV, there exists t ∈ T such that

tdb(A), δ, ν[y 7→ t] 
 ϕ,

where δ[x 7→ a] (ν[y 7→ t]) denotes the substitution exactly as δ (ν) except for
that we fix δ(x) = a (ν(y) = t). We say that a 2FO formula ϕ is satisfied in
tdb(A), denoted as tdb(A) 
 ϕ, iff there exist d-/t-substitutions δ, ν, such that
tdb(A), δ, ν 
 ϕ.

Next, we define the rules for rewriting CTQs into 2FO formulas.

Definition 8 (2FO rewriting of CTQs). The 2FO rewriting of a CTQ ψ
is a formula dψe2FO obtained from ψ by applying the transformation d·e2FO ,
defined inductively as follows:

d[q(d)](u)e2FO = ∃t1, t2.(RcoalqT (d, t1, t2) ∧ t1 ≤ u− ∧ u+ ≤ t2),
du∗ < v∗e2FO = u∗ < v∗,
d¬ψe2FO = ¬dψe2FO ,

dψ1 ∧ ψ2e2FO = dψ1e2FO ∧ dψ2e2FO ,
d∃y.ψe2FO = ∃y−, y+.(y− ≤ y+ ∧ dψe2FO),

where the involved syntactic abbreviations are as follows:

RcoalqT (d, u, v) , ∃t1, t2.RqT (d, u, t1) ∧RqT (d, t2, v) ∧
¬∃t3, t4.(RqT (d, t3, t4) ∧ t3 < u ∧ u ≤ t4) ∧
¬∃t3, t4.(RqT (d, t3, t4) ∧ t3 ≤ v ∧ v < t4) ∧
¬∃t3, t4.(RqT (d, t3, t4) ∧ u < t3 ∧ t4 ≤ v ∧
¬∃t5, t6.(RqT (d, t5, t6) ∧ t5 < t3 ∧ t3 ≤ t6))

(1)

where for qT =
∨

1≤i≤m
qi:

RqT (d, u, v) ,
∨

1≤i≤m
Rqi(d, u, v) (2)
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and for every qi(d) = ∃x.(
∧

1≤j≤n
αj(dj)):

Rqi
(d, u, v) , ∃t1, . . . , t2n.∃x.

∧
1≤j≤n

(Rαj
(dj , tj , tn+j)) ∧

u = max(t1, . . . , tn) ∧ v = min(tn+1, . . . , t2n) ∧ u ≤ v
(3)

where:
u = max(t1, . . . , tn) ,

∧
1≤i≤n

((
∧

1≤j≤n
tj ≤ ti)→ u = ti)

v = min(t1, . . . , tn) ,
∧

1≤i≤n
((

∧
1≤j≤n

ti ≤ tj)→ v = ti)
(4)

The pivotal part of CTQ rewriting is the translation of the embedded CQs. In
this respect, the proposed approach builds directly on the standard FO rewritings
of CQs, which are obtainable via existing techniques [8]. Given an FO rewriting
qT of a CQ q, all atoms in qT are temporalized (3) and further incorporated in
special formula templates (1)-(4), in order to meet two key challenges inherent
to querying concrete TDBs:

– computing temporal joins, i.e., identifying maximal time intervals over which
conjunctions of atoms are satisfied,

– applying coalescing, i.e., merging overlapping and adjacent intervals for the
(intermediate) query results.

To illustrate these issues and the roles played by the formula templates,
consider the example presented in Figure 1, which addresses the following setup:

CTA: A = {[1, 7] : B(a), [1, 3] : C(a), [3, 10] : C(a), [6, 12] : D(a)},
TBox: T = {D v B},
CTQ: [q(a)](u), where q(x) = B(x) ∧ C(x) and u = [1, 10].

Under the assumed TBox, the FO rewriting of q can be formulated as qT (x) =
q1(x) ∨ q2(x), where q1(x) = B(x) ∧ C(x) and q2(x) = D(x) ∧ C(x). By Defini-
tion 8, the satisfaction of condition tdb(A) 
 [q(a)](u) is equivalent to verifying
whether (a, t1, t2) ∈ (Rcoal

qT )D, for some t1, t2 ∈ T , such that t1 ≤ u− ≤ u+ ≤ t2.
Computing (Rcoal

qT )D can be conceptually divided into three consecutive phases.
Firstly, we compute temporal joins over the sets of ABox assertions entail-

ing each CQ qi, i.e., we identify all intervals τ , such that there exist a set of
assertions S = {τj : αj(dj) ∈ A}, where the atoms αj(dj) in S provide the
exact matches for the conjuncts of qi, while

⋂
j τj = τ . Relation Rqi

, defined
via formula template (3), augmented with (4), which fixes an FO formalization
of the functions max and min, selects exactly such intervals for each answer
to each qi. In our example, Rq1 contains tuples (a, 1, 3) and (a, 3, 7), while Rq2
tuple (a, 6, 10). In the second phase, captured by the template (2), all such tu-
ples become automatically instances of the common relation RqT . Finally, RqT
is coalesced, resulting in the relation RcoalqT . This phase is executed by means
of the template (1), which is based on a straightforward FO formalization of
the coalescing mechanism, known in the context of TDBs [6]. Technically, for
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[1, 7]: B(a)

[6, 12]: D(a)

[3, 10]: C(a)

Rq1
(a, 3, 7)

Rq2
(a, 6, 10)

RqT  (a, 1, 10) coal 

[1, 3]: C(a)

Rq1
(a, 1, 3)

RqT  (a, 1, 3) 

RqT  (a, 3, 7) 

RqT  (a, 6, 10) 

                      

                      

                      

Rqi

RqT  

RqT   coal 

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Computing Rqi , RqT and Rcoal
qT , for q(x) = B(x) ∧ C(x) and T = {D v B}.

each tuple a comprising an answer to q, the relation RcoalqT selects the minimal
and maximal time points, such that for every point t between the two there
exists a tuple (a, t1, t2) ∈ (RqT )D with t1 ≤ t ≤ t2. In the presented example,
RcoalqT contains exactly one tuple (a, 1, 10), which is the result of coalescing tuples
(a, 1, 3), (a, 3, 7) and (a, 6, 10) in RqT . Consequently, the CTQ [q(a)](u) evaluates
to true over T and A.

Since 2FO queries, in the shape defined above, can be naturally considered
as formulas of the relational calculus, the final step of restating them into the
SQL syntax can be carried out following broadly adopted translation strategies
[17]. In practice, to ensure appropriate quantification over the time domain in
RDBMSs, one would usually need to include it as an explicitly represented (and
stored in the TDB) monadic relation RT , such that RDT = T , which should
be further introduced in the translation of the temporal quantifiers from the
Definition 1, as follows:

d∃y.ψe2FO = ∃y−, y+.(RT (y−) ∧RT (y+) ∧ y− ≤ y+ ∧ dψe2FO).

Accordingly, every free temporal variable x ∈ TV occurring in a 2FO query
should be additionally guarded by the restriction RT (x) in the resulting trans-
lation, in order to be properly handled by the substitution mechanisms imple-
mented in typical RDBMSs.

Agreeably, even though the presented rewriting is mathematically correct,
as we demonstrate in the following part, it can be expected to be suboptimal
in terms of the query answering efficiency. For instance, the naive coalescing
mechanism, captured by the formula template (1), is known to be highly inef-
ficient and can be substantially improved using more sophisticated approaches
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[25]. The usefulness of this and other potential optimizations, on which we also
shortly remark at the end of the next section, can be ultimately assessed only
on the grounds of empirical evaluation, which is outside the scope of the current
work.

5 Query Answering via 2FO Rewriting

The next theorem ensures correctness of CTQ answering via the 2FO rewriting.

Theorem 1 (Correctness of 2FO rewriting). For every TBox T , CTA A,
CTQ ψ, and an answer σ to ψ, it holds that:

T ,A |= σ(ψ) iff tdb(A) 
 dσ(ψ)e2FO .

The proof, presented in the appendix, follows by structural induction over
the syntactic cases addressed in the rewriting rules. In the technically most
demanding case of d[q(d)](u)e2FO we essentially formalize the discussion from
the previous section. The remaining ones are largely straightforward.

Importantly, the definitions of CTQs and their 2FO rewritings, guarantee
that query answering remains insensitive to the particular ways the CTAs might
encode temporal data, as long as the data is semantically equivalent. This result
is due to the fact that the semantics of CTQs is defined in terms of the underlying
ATAs, hence whenever ‖A‖ = ‖A′‖, for any two CTAs A and A′, the answers
over them must always coincide.

Theorem 2 (CTQs are ‖ · ‖-generic). For every two CTAs A and A′ over a
time domain T = (T,<) such that ‖A‖ = ‖A′‖, a TBox T , a CTQ ψ and an
answer σ to ψ, it holds that:

1. T ,A |= σ(ψ) iff T ,A′ |= σ(ψ),
2. tdb(A) 
 dσ(ψ)e2FO iff tdb(A′) 
 dσ(ψ)e2FO .

Further, we address the complexity and algorithmic aspects of the CTQ en-
tailment. We start by observing that, similarly as in the case of CQ rewriting,
2FO rewritings of CTQs can be in principle exponential in the size of the orig-
inal queries. In fact, as the next proposition shows, this exponential blow-up is
exclusively due to the embedded CQs, as the extra temporal layer itself adds
only linearly to the overall size of the resulting 2FO formulas. This observation
follows directly by scrutinizing the rewriting rules from Definition 8.

Proposition 1 (Size of rewriting). Let T be a TBox, and ψ a CTQ with
q1, . . . , qn being all the CQs occurring in ψ. Then the size of dψe2FO is linear in
the joint size of ψ and the FO rewritings qT1 , . . . , q

T
n of the CQs.

Clearly, the fragment of two-sorted first-order logic used for the CTQ rewrit-
ing is as expressive as FOL. At the same time, it is obviously not more expressive
than that, as one can apply a commonly known, linear reduction, involving the
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Algorithm 1 Incremental computation of relations Rcoal
qT .

Input: CTA A, CTQ ψ
Output: A database R = (NI, T,<, ·D) over the signature {Rcoal

qT | q ∈ cq(ψ)}
1: for all q ∈ cq(ψ) do
2: for all qi(a) ∈ cq(qT ) do
3: for all t1, t2 ∈ T such that tdb(A) 
 Rqi(a, t1, t2) do
4: (Rcoal

qT )D := (Rcoal
qT )D ∪ {(a, t1, t2)}

5: while applicable do {coalescing}
6: for all (a, t1, t2), (a, t3, t4) ∈ (Rcoal

qT )D do
7: if [t1, t2] ∩ [t3, t4] 6= ∅ then
8: (Rcoal

qT )D := (Rcoal
qT )D \ {(a, t1, t2), (a, t3, t4)}

9: (Rcoal
qT )D := (Rcoal

qT )D ∪ {(a,min(t1, t3),max(t2, t4))}
10: end if
11: end for
12: end while
13: end for
14: end for
15: end for

introduction of two designated predicates for representing the respective do-
mains, which are used to guard the scopes of the two sorts of quantifiers (cf. the
last paragraph of the previous section). Based on these observations, we obtain
two results concerning the complexity of CTQ query entailment.

Corollary 1 (Data complexity). The data complexity of CTQ entailment in
CTAs in the presence of TBoxes, over finite time domains, is in AC0.

The restriction to finite time domains in this and the following case is a
natural strategy of ensuring that the first-order structures, over which queries
are evaluated, are indeed finite and, consequently, that model-checking can be
effectively performed over them. Note, that in terms of data complexity, deciding
CTQ entailment via 2FO rewriting remains precisely as hard as deciding CQ
entailment via FO rewriting. The combined complexity, however, increases from
NP- to PSpace-complete.

Theorem 3 (Combined complexity). The combined complexity of CTQ en-
tailment over CTAs in the presence of TBoxes, over finite time domains, is
PSpace-complete.

The result transfers from the entailment problem for boolean FO queries over
relational databases, which is known to be PSpace-complete [10]. However, due
to the exponential blow-up in the size of the 2FO rewritings, explained in Propo-
sition 1, answering CTQs in PSpace requires a somewhat more sophisticated
strategy than just a straightforward evaluation of the rewritten queries over a
TDB. In the approach described in the following proof, we decide the entailment
of a grounded CTQ ψ, by first incrementally computing the interpretations of
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relations RcoalqT , for each CQ q embedded in ψ, and then evaluate over them a
restricted 2FO rewriting of ψ of at most polynomial size.

Proof. Let cq(ψ) denote all CQs occurring in ψ and grounded as in ψ, and let
cq(qT ), for every q ∈ cq(ψ), be the set of all CQs comprising the FO rewriting qT .
With every such qi(a) ∈ cq(qT ), we associate the (query) formula Rqi(a, y1, y2)
defined via the templates (3) and (4). Note that every such formula is linear
in the size of ψ. Algorithm 1 constructs a TDB R = (NI, T,<, ·D) over the
signature {Rcoal

qT | q ∈ cq(ψ)}, by collecting and coalescing all matches to the
formulas Rqi(a, y1, y2) over tdb(A). Observe that by applying coalescing on Rcoal

qT

every time another tuple is added, we guarantee that the size of each (Rcoal
qT )D,

and therefore of R, is linear in the size of T , and in fact cannot be larger then
A. Therefore the algorithm runs in PSpace. Once R is computed, we decide
R 
 dψe2FO

R , where d·e2FO
R is a rewriting specified exactly as d·e2FO in Defini-

tion 8, but without employing any of the formula templates (1)-(4), and instead,
retaining all Rcoal

qT as actual predicates in the resulting 2FO formulas. Clearly,
dψe2FO

R is linear in the size of ψ. Since deciding R 
 dψe2FO
R is a variant of the

(PSpace-hard [10]) entailment problem for boolean FO queries over relational
databases (observe, that d·e2FO

R permits n-ary predicates, for n ≥ 1), it follows
that deciding the CTQ entailment over CTAs in the presence of TBoxes, over
finite time domains, is PSpace-complete. Note that since the interpretations of
Rcoal
qT in both R and tdb(A) must coincide, the procedure preserves soundness

and completeness of query answering. q

The query answering algorithm implied by the above decision procedure
paves the way towards efficient practical implementations, based on the well-
known database technique of materialized view maintenance [20], particularly
in the context of large or often changing TDBs. By maintaining the interme-
diate views containing the answers to the embedded CQs, the approach should
facilitate more localized and fine-grained updating of the answers in response to
database updates and query refinements (be it on the CQ or temporal level), as
well as forms of incremental, anytime query answering.

6 Related Work

This work is naturally related to the research on TDBs, conducted largely in the
1990s [11,12]. Although the advancements in that area provide some theoretical
grounding for our proposal, they are obviously agnostic about the ontology-based
approach on the problem, which we concentrate on here.

The research on temporal extensions to OBDA has been taken up only very
recently by Borgwardt et al. [3,7] and Artale et al. [2]. In [3], the authors study
the same prototypical scenario as addressed here, but focus on its more foun-
dational aspects. They consider a more expressive DL ALC as the background
ontology language and adopt a less restrictive definition of temporal queries.
This offers a richer setting, yet without apparent application prospects in the
context of existing TDBs. The work in [7] is closer aligned with ours. It also
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considers DL-Lite ontologies and studies a rewriting approach based on the use
of standard CQ rewriting techniques. However, the authors define their query
language without involving the epistemic interpretation of embedded CQs and
consider only its positive fragment. It is not difficult to show that under OWL
2 QL, such design leads to a query language strictly less expressive from the
one proposed here. Observe, that due to the condition (†), in Definition 5, the
class of negation-free CTQs preserves the semantics regardless of the use of the
epistemic interpretation of CQs, and so it coincides with the fragment consid-
ered in [7]. Furthermore, the authors focus exclusively on abstract TDBs and do
not address the problem of direct querying of concrete representations, which is
the main goal of our work. In [2], the authors study an orthogonal approach to
temporal OBDA. Instead of adding temporal features on the query level, they
propose temporal extensions to OWL 2 QL, in the spirit of temporal DLs [1].

A number of other frameworks have been developed for managing the valid-
ity time of Semantic Web data represented natively in RDF(S)/OWL languages
[15,14,5,21]. These proposals can be seen as parallel to ours, in that they ad-
dress variants of the same problem, but focus on the use of dedicated Semantic
Web technologies, such as SPARQL and RDF triplestores, instead of involving
a semantic view on the data managed within traditional RDBMSs. This rises
interesting questions about the formal correspondences between the employed
reasoning methods, regardless of their practical implementations. Unfortunately,
most of these approaches are strongly technology-driven and often fall short of
indicating their links to the logic foundations of temporal querying.

7 Conclusions

In this work, we have proposed a principled, yet practical approach to lifting
the popular paradigm of OBDA to temporal case. The presented language TQL
allows for querying temporal data stored in SQL:2011-compliant databases via
a semantic layer of OWL 2 QL ontologies. We believe that this proposal strikes
a good balance between the theoretical strength of its formal foundations and
the feasibility of practical applications, warranted by the possibility of answering
TQL queries in commercially supported RDBMSs via a translation to SQL.

Considering the growing interest in temporal extensions of OBDA, it is crit-
ical to continue the formal study of temporal features supported by the SQL
standards, temporal extensions to logic-based query languages and ontology lan-
guages intended for use in practical OBDA scenarios, and finally, the relation-
ships holding between all of them. In this respect, as part of future research, it
is necessary to establish stronger links between the approach pursued here and
those proposed recently in [3,7,2], with the prospect of gaining a clearer view on
the landscape of technical possibilities regarding the temporal OBDA. In par-
ticular, the scenario of querying temporal data, as considered here and in [3,7],
under temporalized ontologies, such as introduced by Artale et al. [2], deserves
further attention and in-depth study.
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Appendix

Below we present the proofs omitted in the paper.

Proof of Theorem 1. Suppose A, T , π |= σ(ψ), for a CTA A, TBox T , i-
substitution π, CTQ ψ and an answer σ. We show that tdb(A), δ, ν 
 dσ(ψ)e2FO ,
for some d-/t-substitutions δ and ν. For simplicity, we assume ψ is already
grounded with σ, and we consequently omit explicit references to σ in the proof.

To start with, w.l.o.g., we assume that no variable is used more than once
in σ(ψ), and similarly in dσ(ψ)e. Given that we can assume that π[y 7→ τ ] = π,
for every y ∈ IV, τ ∈ I, and ν[y 7→ t] = ν, for every y ∈ TV, t ∈ T . Then
for every y ∈ IV and ∗ ∈ {−,+}, we fix ν(y∗) = π(y)∗. Further, we introduce
some auxiliary nomenclature. Let q = ∃x.(

∧
1≤j≤n

αj(dj)) be a grounded CQ. A

minimal set of support for q is an ABox A such that there exists a mapping
µ : term(q) 7→ NI, called the support substitution, where µ(a) = a for every
a ∈ NI, such that A = {αj(µ(dj)) | 1 ≤ j ≤ n}, where by µ(dj) we denote the
result of applying µ to every term in the sequence dj . Clearly, A |= q. We next
extend this notion towards an FO rewriting of q in a TBox T . A minimal set of
support for qT is a minimal set of support for one of the disjuncts qi in qT .

The proof follows by structural induction over the syntactic cases covered in
the translation rules.

– Suppose A, T , π |= [q(a)](u). Then, by Definition 5, T ,At |= q(a), for every
t ∈ π(u). Consequently, by Definition 1, db(At) 
 qT (a), for every t ∈ π(u).
Let us fix one such arbitrary t ∈ π(u). By construction of db(At), it follows
that there must exist a minimal set of support A ⊆ At, with an associ-
ated support substitution µ, for some disjunct qi(a) of qT (a). Then, by the
construction of At, for every α(d) ∈ A, there must exist τ : α(d) ∈ A,
and consequently Rα(d, τ−, τ+) ∈ tdb(A), such that t ∈ τ . Then there
must exist t′, t′′ ∈ T , and d-/t-substitutions δ, ν, such that tdb(A), δ, ν 
∧
1≤j≤n

(Rαj
(dj , tj , tn+j))∧t′ = max(t1, . . . , tn)∧t′′ = min(tn+1, . . . , t2n)∧t′ ≤

t′′. In particular, this must hold for δ, such that δ(d) = µ(d), for every
d ∈ term(qi). Then it must be also the case that tdb(A), δ, ν 
 Rqi

(a, t′, t′′),
given it is defined via formula templates (3), (4) in Definition 8. Conse-
quently, RqT (a, t′, t′′), as defined via formula template (2) in Definition 8,
must be also satisfied over tdb(A). The same argument can be repeated for
every t ∈ π(u), and possibly involving other qi in qT . This means that the
relation RqT can be eventually coalesced over the whole interval π(u), as
all tuples in RqT , referred to above, must be clearly adjacent or overlap-
ping. Formally then, there must exist v′, v′′ ∈ T , such that v′ ≤ π(u)− and
π(u)+ ≤ v′′, and some d-substitution δ′, agreeing with the support substi-
tutions for each involved qi(a), for which tdb(A), δ′, ν 
 Rcoal

qT (a, v′, v′′), as
defined by formula template (1) in Definition 8. From this it follows that
tdb(A), δ′, ν 
 ∃v′, v′′.(RcoalqT (a, v′, v′′)∧v′ ≤ u−∧u+ ≤ v′′), which concludes
the argument.
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– Suppose A, T , π |= u∗ < v∗. It follows immediately, that tdb(A), δ, ν 
 u∗ <
v∗, for an arbitrary δ and ν restricted as in the beginning of the proof.

– Suppose A, T , π |= ¬ψ, and so that it is not the case that A, T , π |= ψ. By
inductive hypothesis we assume that it is also not the case that tdb(A), δ, ν 

dψe2FO , for some δ and ν. Then it follows immediately that tdb(A), δ, ν 

¬dψe2FO .

– Suppose A, T , π |= ψ1 ∧ ψ2, and so that A, T , π |= ψ1 and A, T , π |=
ψ1. By inductive hypothesis we assume that tdb(A), δ, ν 
 dψ1e2FO and
tdb(A), δ, ν 
 dψ2e2FO , for some δ and ν. Then it follows immediately that
tdb(A), δ, ν 
 dψ1e2FO ∧ dψ2e2FO .

– Suppose A, T , π |= ∃y.ψ, and so that A, T , π |= ψ, given the restriction on
the use of variables in ψ explained in the beginning of the proof. By inductive
hypothesis we assume that tdb(A), δ, ν 
 dψe2FO . But then it must be the
case that tdb(A), δ, ν 
 ∃y−, y+.(y− ≤ y+ ∧ dψe2FO), as ν is restricted as in
the beginning of the proof. Observe that an interval variable y is translated
into a pair of time-point variables y−, y+, with an intended order imposed
by the condition y− < y+.

The inverse direction follows be reverting the steps of the argument above. q

Proof of Theorem 2. Consider two CTAs A and A′ over a time domain T =
(T,<) such that ‖A‖ = ‖A′‖, a TBox T , a CTQ ψ and an answer σ to ψ. Suppose
that T ,A, π |= σ(ψ) for some i-substitution π. Observe that the semantics of
TQL, given in Definition 5, is expressed purely in terms of the ATA ‖A‖. Since
‖A‖ = ‖A′‖ then for every subformula ϕ of σ(ψ) is must be the case that
T ,A, π |= ϕ iff T ,A′, π |= ϕ. Consequently, it follows that T ,A′, π |= σ(ψ). The
argument clearly works in the same way in the opposite direction. Further, by
Theorem 1, it holds that T ,A |= σ(ψ) iff tdb(A) 
 dσ(ψ)e2FO . By the previous
claim, this implies that tdb(A) 
 dσ(ψ)e2FO iff tdb(A′) 
 dσ(ψ)e2FO . q

Proof of Proposition 1. It is easy to see that both the basic rewriting rules
in Definition 8, as well as the involved formula templates (1), (3) and (4), add
at most linearly to the size of the original CTQ. Only template (2) can possibly
introduce an exponential blow-up of the rewriting. This effect is exclusively due
to the fact that the standard FO rewriting of a CQ q, handled in the template,
might consists of exponentially many CQs. q
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