Automated Reasoning in Artificial Intelligence:

INTRODUCTION TO DESCRIPTION LOGIC

Szymon Klarman

(part of the content based on the tutorial by Stefan Schlobach)

szymon.klarman@gmail.com

VU University Amsterdam, 2009-2012
Plan for today

- Description Logic knowledge bases
- Representing knowledge bases in Protégé
- Reasoning tasks and their reduction
\mathcal{ALC}: syntax and semantics

Syntax:
- **concept names**: $A, B, C \ldots$; e.g.: Man, Parent, Car,
- **role names**: $r, s \ldots$; e.g.: biggerThan, likes, locatedIn,
- **concept constructors**: $\top, A, \neg C, C \cap D, C \cup D, \exists r. C, \forall r. C$,
- **individual names**: $a, b \ldots$; e.g.: john, europe, snoopy.

Semantics:
An interpretation is a pair $\mathcal{I} = (\Delta \mathcal{I}, \cdot \mathcal{I})$, where $\Delta \mathcal{I}$ is a non-empty domain of individuals and $\cdot \mathcal{I}$ is an interpretation function, which maps:

- $\top \mathcal{I} = \Delta \mathcal{I}$,
- $A \mathcal{I} \subseteq \Delta \mathcal{I}$ for every concept name A,
- $r \mathcal{I} \subseteq \Delta \mathcal{I} \times \Delta \mathcal{I}$ for every role name r,
- $\cdot \mathcal{I}$ is extended inductively over complex concepts,
- $a \mathcal{I} \in \Delta \mathcal{I}$ for every individual name a.
A DL knowledge base (alt. ontology) $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ consists of:

- **TBox** \mathcal{T}, i.e. terminology,
- **ABox** \mathcal{A}, i.e. assertions about individuals.
TBox: Syntax

Knowledge about relationships between concepts is expressed by means of *terminological axioms* (TBox axioms):

- **concept inclusion**: $C \sqsubseteq D$
 - necessary conditions for objects of type C.
 - Examples:

 \[\text{Elephant} \sqsubseteq \text{Animal} \cap \neg \text{Mouse}\]

 \[\text{Rich} \cap \text{Famous} \sqsubseteq \exists \text{knows}.(\text{Rich} \cap \text{Famous})\]

- **concept equivalence**: $C \equiv D$ (short for $C \sqsubseteq D$ and $D \sqsubseteq C$)
 - necessary and sufficient conditions for objects of type C
 - Examples:

 \[\text{Animal} \cap \text{Rational} \equiv \text{Man} \sqcup \text{Woman}\]

 \[\text{Person} \equiv \exists \text{hasParent}.\text{Person}\]

The *TBox* \mathcal{T} of a KB is a finite set of terminological axioms.
Exercise: modeling TBoxes

An artist is someone who created an artwork. A sculpture is an artwork. A painting is an artwork that is not a sculpture. A painter is someone who created a painting. A sculptor is someone who created an artwork and created only sculptures. If an artwork is created by an artist, he has either painted or sculptured it. A multi-talent is both a painter and sculptor.

Model the information as a DL TBox:

Solution:
Exercise: modeling TBoxes

An artist is someone who created an artwork. A sculpture is an artwork. A painting is an artwork that is not a sculpture. A painter is someone who created a painting. A sculptor is someone who created an artwork and created only sculptures. If an artwork is created by an artist, he has either painted or sculptured it. A multi-talent is both a painter and sculptor.

Model the information as a DL TBox:

Solution:

\[
\begin{align*}
\text{Artist} & \equiv \exists \text{created}.\text{Artwork} \\
\text{Sculpture} & \sqsubseteq \text{Artwork} \\
\text{Painting} & \equiv \text{Artwork} \sqcap \neg \text{Sculpture} \\
\text{Painter} & \equiv \exists \text{created}.\text{Painting} \\
\text{Sculptor} & \equiv \exists \text{created}.\text{Artwork} \sqcap \forall \text{created}.\text{Sculpture} \\
\text{Artwork} & \sqsubseteq \exists \text{painted by}.\text{Artist} \sqcup \exists \text{sculptured by}.\text{Artist} \\
\text{Multitalent} & \sqsubseteq \text{Painter} \sqcap \text{Sculptor}
\end{align*}
\]
ABox: Syntax

Knowledge about individuals in the domain expressed in terms of the vocabulary is specified by means of *assertional axioms* (ABox axioms):

- **concept assertion:** $a : C$
 - individual a is an instance of concept C
 - Example:

 - $mary : Mother$
 - $john : Rich \sqcup \exists \text{hasParent}.Rich$

- **role assertions:** $(a, b) : r$
 - individual a is related to b through the role r
 - Example:

 - $(john, mary) : \text{likes}$
 - $(new_york, amsterdam) : \text{biggerThan}$

The *ABox* \mathcal{A} of a KB is a finite set of assertional axioms.
Exercise: modeling ABoxes

Rembrandt created the artwork: “nightwatch”, but never created a sculpture. “nightwatch” is a painting. Michelangelo created at least one sculpture.

Model the information as a DL ABox.

Solution:
Exercise: modeling ABoxes

Rembrandt created the artwork: “nightwatch”, but never created a sculpture. “nightwatch” is a painting. Michelangelo created at least one sculpture.

Model the information as a DL ABox.

Solution:

\[(\text{rembrandt}, \text{nightwatch}) : \text{created} \]
\[
\text{rembrandt} : -\exists \text{created.} \text{Sculpture} \\
\text{nightwatch} : \text{Painting} \\
\text{michelangelo} : \exists \text{created.} \text{Sculpture}
\]
Protégé

Protégé is an ontology editor for OWL. But since OWL is a syntactic variant of DLs, OWL ontologies can be seen as DL knowledge bases.

DL vs. Protégé interface:

- OWL nomenclature: concept \rightsquigarrow class, role \rightsquigarrow object property.
- Protégé user-friendly syntax:

\[
\begin{array}{l}
\top \rightsquigarrow \text{Thing} \\
\bot \rightsquigarrow \text{Nothing} \\
\neg C \rightsquigarrow \text{not } C
\end{array}
\]

\[
\begin{array}{l}
C \sqsubseteq D \rightsquigarrow (C \text{ and } D) \\
C \sqcup D \rightsquigarrow (C \text{ or } D) \\
\exists r.C \rightsquigarrow (r \text{ some } C) \\
\forall r.C \rightsquigarrow (r \text{ only } C)
\end{array}
\]

- Designated fields in a template for entering axioms:

\[
\begin{array}{l}
C \sqsubseteq D \rightsquigarrow \text{Classes} / “C” / \text{Superclasses} / “D” \\
C \equiv D \rightsquigarrow \text{Classes} / “C” / \text{Equivalent classes} / “D” \\
a : C \rightsquigarrow \text{Individuals} / “a” / \text{Types} / “C” \\
(a, b) : r \rightsquigarrow \text{Individuals} / “a” / \text{Object prop. asser.} / “r” / “b”
\end{array}
\]
Exercise: modeling ontology in Protégé:

Enter the following KB into Protégé:

\[
\begin{align*}
\text{Artist} & \equiv \exists \text{created. Artwork} \\
\text{Sculpture} & \sqsubseteq \text{Artwork} \\
\text{Painting} & \equiv \text{Artwork} \sqcap \neg \text{Sculpture} \\
\text{Painter} & \equiv \exists \text{created. Painting} \\
\text{Sculptor} & \equiv \exists \text{created. T} \sqcap \forall \text{created. Sculpture} \\
\text{Multitalent} & \sqsubseteq \text{Painter} \sqcap \text{Sculptor}
\end{align*}
\]

\[\begin{align*}
\text{(rembrandt, nightwatch)} : \text{created} \\
\text{rembrandt} : \neg \exists \text{created. Sculpture} \\
\text{nightwatch : Artwork} \\
\text{michelangelo : } \exists \text{created. Sculpture}
\end{align*}\]
TBox: Semantics

Let $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be an interpretation. \mathcal{I} satisfies a terminological axiom in either of the two cases:

- for $C \sqsubseteq D$ if and only $C^\mathcal{I} \subseteq D^\mathcal{I}$
- for $C \equiv D$ if and only $C^\mathcal{I} = D^\mathcal{I}$

An interpretation \mathcal{I} is a *model* of the TBox \mathcal{T} iff it satisfies every terminological axiom in \mathcal{T}.
TBox: Semantics example

Let \mathcal{I} be defined as:

- $\Delta^\mathcal{I} = \{\text{rembrandt, michelangelo, rodin, nightwatch, david, sixtChappel, thinker}\}$

- $\text{Artwork}^\mathcal{I} = \{\text{nightwatch, sixtChappel, thinker, david}\}$,
 $\text{Sculptor}^\mathcal{I} = \{\text{rodin, michelangelo}\}$
 $\text{Sculpture}^\mathcal{I} = \{\text{thinker, david}\}$
 $\text{Painter}^\mathcal{I} = \{\text{rembrandt, michelangelo}\}$
 $\text{Painting}^\mathcal{I} = \{\text{nightwatch, sixtChappel}\}$
 $\text{sculptured}^\mathcal{I} = \{(\text{rodin, thinker}), (\text{michelangelo, david})\}$
 $\text{created}^\mathcal{I} = \{(\text{rembrandt, nightwatch}), (\text{michelangelo, sixtChappel}), (\text{michelangelo, david}), (\text{rodin, thinker})\}$

Is \mathcal{I} a model of \mathcal{T}?

- $\text{Painting} \sqsubseteq \text{Artwork} \sqcap \neg \text{Sculpture}$
- $\text{Painter} \equiv \exists \text{created}. \text{Painting}$
- $\text{Sculptor} \equiv \exists \text{sculptured}. \text{Artwork} \sqcap \forall \text{created}. \text{Sculpture}$
Reasoning tasks for TBoxes

For a TBox \mathcal{T} and concepts C, D occurring in \mathcal{T}.

concept satisfiability:

C is *satisfiable* w.r.t. \mathcal{T} iff there is a model \mathcal{I} of \mathcal{T}: $C^\mathcal{I} \neq \emptyset$

subsumption: $\mathcal{T} \models C \sqsubseteq D$?

C is *subsumed* by D in \mathcal{T} iff $C^\mathcal{I} \subseteq D^\mathcal{I}$ in every model \mathcal{I} of \mathcal{T}

equivalence: $\mathcal{T} \models C \equiv D$?

Concepts C and D are *equivalent* in \mathcal{T} iff $C^\mathcal{I} = D^\mathcal{I}$ in every model \mathcal{I} of \mathcal{T}.

Szymon Klarman 12 / 19
Reduction of TBox reasoning tasks

All TBox problems in \mathcal{ALC} are reducible to concept satisfiability:

- C is subsumed by D in $\mathcal{T} \iff C \sqcap \neg D$ is unsatisfiable w.r.t. \mathcal{T}

 Proof: \[C \text{ is subsumed by } D \text{ in } \mathcal{T} \iff \text{for every model } \mathcal{I} \text{ of } \mathcal{T} \text{ it holds that } C^\mathcal{I} \subseteq D^\mathcal{I} \iff \text{for every model } \mathcal{I} \text{ of } \mathcal{T} \text{ it holds that } C^\mathcal{I} \cap (\neg D)^\mathcal{I} = \emptyset \iff \text{there is no model } \mathcal{I} \text{ of } \mathcal{T} \text{ s.t. } (C \sqcap \neg D)^\mathcal{I} \neq \emptyset \iff C \sqcap \neg D \text{ is unsatisfiable w.r.t. } \mathcal{T}. \]

- C and D are equivalent in $\mathcal{T} \iff C$ is subsumed by D in \mathcal{T} and D is subsumed by C in \mathcal{T}

Note: Notice that reduction to concept satisfiability requires: \sqcap and \neg for complex concepts.
ABox: Semantics

Let $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be an interpretation. \mathcal{I} satisfies an assertional axiom in either of the two cases:

- for $a : C$ if and only $a^\mathcal{I} \in C^\mathcal{I}$
- for $(a, b) : r$ if and only $(a^\mathcal{I}, b^\mathcal{I}) \in r^\mathcal{I}$

An interpretation \mathcal{I} is a model of the ABox \mathcal{A} iff it satisfies every assertional axiom in \mathcal{A}.

An interpretation \mathcal{I} is a model of $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ iff \mathcal{I} is a model of both \mathcal{A} and \mathcal{T}.

Note: By default Unique Name Assumption applies in DLs (but not in OWL!)
ABox: Semantics example

Let \mathcal{I} be defined as:

- $\Delta^\mathcal{I} = \{\text{rembrandt, michelangelo, rodin, nightwatch, david, sixtChappel, thinker}\}$
- $\text{Artwork}^\mathcal{I} = \{\text{nightwatch, sixtChappel, thinker, david}\}$,
 $\text{Sculpture}^\mathcal{I} = \{\text{thinker, david}\}$
 $\text{Painting}^\mathcal{I} = \{\text{nightwatch, sixtChappel}\}$
 $\text{created}^\mathcal{I} = \{(\text{rembrandt, nightwatch}), (\text{michelangelo, sixtChappel}), (\text{michelangelo, david}), (\text{rodin, thinker})\}$

Is \mathcal{I} a model of \mathcal{A}?

$(\text{rodin, thinker}) : \text{created}$

$\text{nightwatch} : \text{Artwork}$

$\text{rembrandt} : \neg \exists \text{created}. \text{Sculpture}$
Reasoning tasks for ABoxes

For a KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, a concept C, a role r and individuals a, b:

ABox consistency:

\mathcal{A} is *consistent* w.r.t \mathcal{T} iff there is a model of \mathcal{K}.

Note: in such case we also say that \mathcal{K} is *satisfiable*.

Instance checking: $\mathcal{K} \models a : C$? (resp. $\mathcal{K} \models (a, b) : r$) ?

- a is *an instance* of C in \mathcal{K} iff every model of \mathcal{K} is a model of $a : C$
- (a, b) are *in related* r in \mathcal{K} iff every model of \mathcal{K} is a model of $(a, b) : r$

Derived tasks:

- **retrieval:** Given a concept C and an Abox \mathcal{A} find all individuals a such that $\mathcal{K} \models a : C$
- **realization:** Given an individual a and a set of concepts, find the most specific concept C such that $\mathcal{K} \models a : C$.
Reduction of ABox reasoning tasks

All ABox problems in \(\mathcal{ALC} \) are reducible to ABox consistency. For KB \(\mathcal{K} = (\mathcal{T}, \mathcal{A}) \):

- \(a \) is an instance of \(C \) in \(\mathcal{K} \) \(\iff \mathcal{A} \cup \{ a : \neg C \} \) is inconsistent w.r.t. \(\mathcal{T} \).

 Proof: \(a \) is an instance of \(C \) in \(\mathcal{K} \)
 \(\iff \) for every model \(\mathcal{I} \) of \(\mathcal{K} \) it holds that \(a^\mathcal{I} \in C^\mathcal{I} \)
 \(\iff \) there is no model \(\mathcal{I} \) of \(\mathcal{K} \) s.t. \(a^\mathcal{I} \in (\neg C')^\mathcal{I} \)
 \(\iff \) there is no model \(\mathcal{I} \) of both \(\mathcal{A} \cup \{ a : \neg C \} \) and \(\mathcal{T} \)
 \(\iff \mathcal{A} \cup \{ a : \neg C' \} \) is inconsistent w.r.t. \(\mathcal{T} \).

- \((a, b)\) are in relation \(r \) \(\iff (a, b) : r \in \mathcal{A}. \)

- retrieval and realization equivalent to a finite number of instance checking and subsumption tasks.
Reduction of reasoning tasks

...and finally:

- \(C \) is \textit{satisfiable} w.r.t. \(\mathcal{T} \) \(\iff \) \(\mathcal{A} = \{ a : C \} \) is \textit{consistent} w.r.t. \(\mathcal{T} \), for a fresh individual name \(a \)

Proof:
- \(C \) is satisfiable w.r.t. \(\mathcal{T} \)
 \(\iff \) there is a model \(\mathcal{I} \) of \(\mathcal{T} \) such that \(C^\mathcal{I} \neq \emptyset \)
 \(\iff \) there is at least one instance of \(C \) in \(\mathcal{I} \) — name it \(a \)
 \(\iff \) there is a model of \(\mathcal{T} \) which satisfies assertion \(a : C \)
 \(\iff \) there is a model of \(\mathcal{T} \) which is a model of
 the ABox \(\mathcal{A} = \{ a : C \} \)
 \(\iff \) \(\mathcal{A} = \{ a : C \} \) is consistent w.r.t. \(\mathcal{T} \), for a fresh name \(a \).

Hence:

- All reasoning tasks in \(\mathcal{ALC} \) can be reduced to a single task of checking ABox consistency w.r.t. TBox.
- The complexity of ABox consistency checking cannot be lower than that of the other tasks.
Summary

- A DL knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ consists of the TBox (terminology) \mathcal{T} and the ABox (assertions) \mathcal{A}.
- Axioms of a KB restrict the possible models.
- The reasoning tasks in \mathcal{ALC} for TBoxes and ABoxes can be reduced to checking ABox consistency w.r.t. TBox.

Next:

- Tableau algorithm for reasoning in \mathcal{ALC}.